Abstract:
A particular overall architecture for transmission over a bonded channel system consisting of two interconnected MoCA (Multimedia over Coax Alliance) 2.0 SoCs (“Systems on a Chip) and a method and apparatus for the case of a “bonded” channel network. With a bonded channel network, the data is divided into two segments, the first of which is transported over a primary channel and the second of which is transported over a secondary channel.
Abstract:
A method and system for multiline transmission in communications systems are described. A transmitter (1102) performs MIMO pre-processing (1104) on symbol vectors. A signal vector associated with the symbol vector is transmitted. A receiver (1106) performs MIMO post-processing (1108) on the received signal vectors to minimize the effects of crosstalk on pairs of lines in the multiline communications system.
Abstract:
A method of reducing resource overhead attributed to preambles in a communication system includes transmitting, at a transmitter, one or more signals including a first packet. The first packet is transmitted in a first time-frequency grant including a first set of one or more subcarriers. The first packet includes a full preamble including reference signal information for determining a total channel estimate for every subcarrier to be used in transmission of the first packet. A second packet is transmitted in a second time-frequency grant including a second set of one or more subcarriers without a full preamble when a receiver configured to communicate with the transmitter can determine a phase offset between the transmitter and the receiver from the signals received at the receiver.
Abstract:
A method and system for multiline transmission in communications systems are described. Eigenvalues are calculated to maximize equalized channel impulse response (1010). Eigenvectors associated with dominant eigenvalues are identified (1020). The eigenvectors are combined into a subspace. Optimization is performed over the subspace to calculate subspace time equalizer coefficients (1030).
Abstract:
A power management system for home entertainment networks having three power states. The network controller is empowered to move nodes within the home entertainment network between the power states.
Abstract:
A method and apparatus for deploying new technology such as MIMO transmission technology in a geographically distributed network such as a telecommunications network is provided. In one embodiment, the invention is a method of installing new technology in an existing geographically distributed network. The method includes dedicating network resources of the geographically distributed network for the new technology to produce dedicated network resources of the geographically distributed network. The method also includes installing a component for the new technology at a centralized network facility of the geographically distributed network. Moreover, the method includes coupling the dedicated network resources of the geographically distributed network to the component. The method may further include installing subscriber equipment at subscriber sites. The new technology may be MIMO transmission technology.
Abstract:
A method and apparatus for a multiple channel communication device training, and processing utilizing a transmit signal power control operation. Multiple channel communication devices utilize inter-channel crosstalk mitigation techniques, such as MIMO processing modules or MIMO precoding systems, to cancel unwanted crosstalk coupling across active and provisioned channels. Upon provisioning and activation of a new channel that connects to the multiple channel communication device the signal on the new channel couples into other channels and the existing MIMO filtering or processing structure is untrained to mitigate the crosstalk from the new channel. A power control training operation prevents crosstalk from hindering operation on other channels during the training operation. During one example training operation, the power level of a transmit signal is incrementally increased as the crosstalk cancellation filter(s) are trained.
Abstract:
A method and apparatus for deploying new technology such as MIMO transmission technology in a geographically distributed network such as a telecommunications network is provided. In one embodiment, the invention is a method of installing new technology in an existing geographically distributed network. The method includes dedicating network resources of the geographically distributed network for the new technology to produce dedicated network resources of the geographically distributed network. The method also includes installing a component for the new technology at a centralized network facility of the geographically distributed network. Moreover, the method includes coupling the dedicated network resources of the geographically distributed network to the component. The method may further include installing subscriber equipment at subscriber sites. The new technology may be MIMO transmission technology.
Abstract:
A method of reducing resource overhead attributed to preambles in a communication system includes transmitting, at a transmitter, one or more signals including a first packet. The first packet is transmitted in a first time-frequency grant including a first set of one or more subcarriers. The first packet includes a full preamble including reference signal information for determining a total channel estimate for every subcarrier to be used in transmission of the first packet. A second packet is transmitted in a second time-frequency grant including a second set of one or more subcarriers without a full preamble when a receiver configured to communicate with the transmitter can determine a phase offset between the transmitter and the receiver from the signals received at the receiver.