Abstract:
A method for controlling braking in a vehicle having a brake pedal includes the steps of obtaining a first measure of braking intent based on movement of the brake pedal, obtaining a second measure of braking intent based on a force applied to the brake pedal, controlling the braking based on the first measure provided that a transition parameter is less than a first predetermined value, controlling the braking based on the second measure provided that the transition parameter is greater than a second predetermined value, and controlling the braking based on the first measure and the second measure provided that the transition parameter is greater than the first predetermined value and less than the second predetermined value.
Abstract:
An exemplary embodiment of a brake caliper has a housing with a first chamber and a second chamber. The brake caliper also has a first piston that moves in response to fluid pressure in the first chamber and has a second piston that moves in response to fluid pressure in the second chamber. A brake pad has a leading end portion that is acted upon by the first piston and has a trailing end portion that is acted upon by the second piston. A fluid passage leads to the first chamber. The trailing end portion contacts an associated rotor before the leading end portion contacts the rotor.
Abstract:
A method for controlling braking of a vehicle having a first axle and a second axle includes the steps of obtaining a deceleration value pertaining to an input from a driver of the vehicle, braking the first axle with a first pressure, braking the second axle with a second pressure that is substantially equal to the first pressure if the deceleration value has not exceeded a predetermined threshold, and braking the second axle with a third pressure that is greater than the first pressure if the deceleration value has exceeded the predetermined threshold.
Abstract:
A method for controlling braking of a vehicle includes the steps of calculating a first pressure based on a driver request, and providing pressure that does not exceed a predetermined pressure threshold if the vehicle is stationary and the first pressure is less than the predetermined pressure threshold.
Abstract:
A method that compensates for fluid pressure variations in a vehicle brake system so that the fluid pressure, brake torque and/or brake force at the wheel more accurately reflects that requested by the driver. In an exemplary embodiment, the method determines the braking intent of the driver, determines a current stage of the braking event (e.g., an apply stage, release stage, etc.), uses the braking event stage and the driver braking intent to select a pressure compensation, and uses the pressure compensation to generate compensated brake command signals for operating the vehicle brake system. This method is well suited for use with brake-by-wire systems, such as an electrohydraulic braking (EHB) system.
Abstract:
A vehicle brake system and method that are designed to improve the driver braking experience by compensating for the effects that humidity and temperature can have on brake performance. According to one embodiment, the method determines if a braking event is underway and, if so, it measures humidity and brake temperature. With this information, the method is able to compensate for anticipated changes in the coefficient of friction (μ) of one or more brake components, such as brake pads or rotors, and to provide a modified brake command signal accordingly.
Abstract:
A method that compensates for temperature-related effects in a vehicle brake system. According to one embodiment, the method determines the temperature of a brake pad, calculates a temperature-based modifier, and then uses the temperature-based modifier to adjust one or more brake command signals provided to the vehicle brake system so that they are compensated for temperature-related changes in the coefficient of friction (μ) of the brake pad and rotor. The method may be used with brake-by-wire systems such as electrohydraulic braking (EHB) systems and electromechanical braking (EMB) systems.
Abstract:
A method for controlling braking in a vehicle having a brake pedal includes the steps of calculating an intended amount of brake torque corresponding to a braking request made via application of the brake pedal, applying the intended amount of brake torque if a pre-determined condition pertaining to the vehicle is satisfied, and applying a filtered amount of brake torque if the pre-determined condition is not satisfied.
Abstract:
A brake rotor providing reduced brake pad radial taper wear by providing brake rotor friction surface indent patterns. For example, the indent patterns are the form of radial-biased grooves or linearly arranged cross-drill hole sets, patterned in a configuration that balances brake pad wear, thereby reducing brake pad radial taper wear in a manner tuned specifically for a given type of brake caliper and brake pad material, wherein the reduction in brake pad radial taper wear is accomplished with virtually no penalty to brake pad life.
Abstract:
A method for controlling braking in a vehicle having a brake pedal includes the steps of calculating an intended amount of brake torque corresponding to a braking request made via application of the brake pedal, applying the intended amount of brake torque if a pre-determined condition pertaining to the vehicle is satisfied, and applying a filtered amount of brake torque if the pre-determined condition is not satisfied.