Abstract:
A JBS diode includes a silicon substrate, a first P doped region, a metal layer, a second P doped region, and a first N doped region. The silicon substrate includes an upper surface. An NBL is provided in the bottom of the silicon substrate. An N well is provided between the upper surface and the NBL. The first P doped region is arranged in the N well, and extending downward from the upper surface. The metal layer covers the upper surface, and located on a side of the first P doped region. The second P doped region is arranged in the N well, extending downward from the upper surface, and located at the other side of the first P doped region. The first N doped region is arranged in the N well, extending downward from the upper surface, and located at the other side of the first P doped region.
Abstract:
A voltage converting controller is applied to a switching voltage converting circuit, in which the voltage converting controller periodically operates a high-side power switch and a low-side power switch in the switching voltage converting circuit with a high-side control signal and a low-side control signal, respectively, so as to convert an input voltage into an output voltage via an inductor. Defining an ideal duty cycle as the rating value of the output voltage divided by the value of the input voltage, when the ideal duty cycle is less than one threshold duty cycle, then the period of the high-side control signal is a constant; and when the ideal duty cycle is greater than the threshold duty cycle, the period of the high-side control signal and the period of the ideal duty cycle are positively correlated.
Abstract:
A fast start-up circuit and a method of a flyback power supply utilize a charging current that is related to an input voltage of the flyback power supply to charge a control terminal of a power switch of the flyback power supply during a start-up mode. Accordingly, the power switch can be switched, and a supply voltage of the flyback power supply rises. When an output terminal of the flyback power supply occurs a short circuit, the fast start-up circuit and the method of the present invention will decrease a maximum of a current through the power switch, thereby avoiding that the power switch is overheating.
Abstract:
A voltage converting controller. When output current increases from a first current value to a second current value, the voltage converting controller temporarily sets a control frequency to a maximum frequency value. After a period of time, the voltage converting controller sets the control frequency to a target control frequency corresponding to the second current value. And, when the output current increases from the first current value to the second current value, the voltage converting controller temporarily sets a secondary-side output voltage to an transient output value; and after a period of time, the voltage converting controller sets a steady state value of the secondary-side output voltage to an output voltage steady state value corresponding to the second current value.
Abstract:
A light emitting diode driver includes: a serial-to-parallel conversion unit converting, based on a reference clock signal, a serial input signal carrying a number (N) of M-bit gray codes into a parallel input signal carrying the M-bit gray codes; a counting unit counting an output control signal to output a counting value; a data buffer unit storing, based on a latch signal, the M-bit gray codes carried by the parallel input signal, and outputting, based on the counting value and the M-bit gray codes, an N-bit signal consisting of N bits, each of which is an ith one of M bits of a respective M-bit gray code, where i is associated with the counting value; and an output unit generating a number (N) of driving current signals based on at least the N-bit signal.
Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.
Abstract:
A power management unit, adapted to a wireless power system, includes: a rectifier, converts an AC power received by an input port thereof to a direct-current (DC) voltage outputted by a rectifying output terminal thereof; a first switch, wherein a first protecting capacitor is coupled between one terminal of the input port and a channel thereof; a second switch, wherein a second protecting capacitor is coupled between the other terminal of the input port and a channel thereof; a reference voltage terminal, for providing a reference voltage; and, a comparator, including two input terminals coupled to the rectifying output terminal and the reference voltage terminal respectively, and including an output terminal coupled to both the control terminals of the first switch and the second switch.
Abstract:
An oscillator generates a clock signal according to a voltage, a current and a capacitance, and a frequency jitter circuit and method use a random number to modulate the voltage, the current or the capacitance, or a count value to modulate the capacitance, to jitter the frequency of the clock signal.
Abstract:
An LED driving device includes: a rectifying circuit for outputting a DC voltage to a string of M LED units; (M−1) first switching circuits each coupled between a corresponding one of first to (M−1)th LED units and ground; and a second switching circuit coupled between an Mth LED unit and ground. When the DC voltage is sufficient to turn on first to kth LED units, where 1≦k≦M, the kth LED unit is coupled to ground through first and second conductive paths provided by a resistor unit, and a corresponding first switching circuit or the second switching circuit, and each of the first to (k−1)th LED units is coupled to ground through a third conductive path provided by a corresponding first switching circuit and the resistor unit.