Abstract:
Provided is an analog front end of a digital TV, a digital TV system having the same, and a method of operating the same. The analog front end includes: a first selection circuit which selectively outputs differential sound intermediate frequency signals or differential TV broadcast signals in response to a first selection signal; a second selection circuit which outputs a clock signal among a plurality of clock signals having a different sampling frequencies, in response to a second selection signal; and an analog-to-digital converter which converts output signals output from the first selection circuit to a digital code, according to a sampling frequency of a clock signal output from the second selection circuit.
Abstract:
The present invention relates to a conductive metal ink composition which is properly applied for roll-printing process to form conductive pattern, and the method of preparing a conductive pattern using the same.The conductive metal ink composition comprises a conductive metal powder; a non-aqueous solvent comprising a first non-aqueous solvent having a vapor pressure of 3 torr or lower at 25° C. and a second non-aqueous solvent having a vapor pressure of higher than 3 torr at 25° C.; and a coatability improving polymer and is coated for forming the conductive pattern by the roll printing method.
Abstract:
In a display panel and a method of manufacturing the same, the display panel includes a first display substrate, a second display substrate and a sealing member. The first display substrate includes a first alignment layer in a first display region and a first peripheral region of a first base substrate, and a first backflow-blocking pattern in the first peripheral region and having a curvature to surround a vertex portion of the first display region. The second display substrate includes a second alignment layer in a second display region which faces the first display region and a second peripheral region of a second base substrate. The sealing member includes a corner portion having substantially the same curvature as the first backflow-blocking pattern to surround an outline of the first and second peripheral regions.
Abstract:
A display panel includes a first substrate, a second substrate and a spacer disposed there between. The second substrate includes a black matrix pattern, a color filter, a dummy color filter and a common electrode. The black matrix pattern is formed with an opening portion which is filled by the color filter. The dummy color filter is made of same material as the color filter and extends in a vertical direction along which the spacer also extends. The spacer is formed between the first substrate and the second substrate in correspondence with location of the dummy color filter so that the effective spaced apart distance that the spacer provides between the first and second substrates is a function of a thickness of the dummy color filter.
Abstract:
A method for manufacturing a solar cell comprises disposing a first doping layer on a substrate, forming a first doping layer pattern by patterning the first doping layer to expose a portion of the substrate, disposing a second doping layer on the first doping layer pattern to cover the exposed portion of the substrate, diffusing an impurity from the first doping layer pattern which forms a first doping region in a surface of the substrate, and diffusing an impurity from the second doping layer which forms a second doping region in the surface of the substrate, wherein the forming of the first doping layer pattern uses an etching paste.
Abstract:
Disclosed is a method for preparing a porous carbon structure, the method comprising the steps of: (a) mixing a carbon precursor, a pyrolytic template, which is pyrolyzed at the carbonization temperature of the carbon precursor or removed by post-treatment after the carbonization of the carbon precursor so as to form pores, and a solvent, to prepare a spray solution; and (b) subjecting the spray solution either to spray pyrolysis or to spray drying and then spray pyrolysis, so as to form a carbonized carbon structure, and then removing the template from the carbon structure. A mesoporous spherical carbon prepared according to the disclosed method may have a large specific surface area and a large pore volume through the control of the kind and concentration of template, and thus can be used in a wide range of applications, including catalysts, adsorbents, electrode materials, materials for separation and purification, and materials for storing hydrogen and drugs.
Abstract:
An expanding vascular stent is disclosed that is inserted into a blood vessel in the human body and expands the blood vessel. The stent is configured in such a way that adjacent rows, each of which is comprised of a plurality of identical cells, are symmetrically arranged, in an out of phase manner. When the stent is expanded in the radial direction, the adjacent rows are expanded in opposite directions, maintaining their linearly symmetrical state. Therefore, the reduction in the length of the stent can be minimized. Since the stent has also a great degree of flexibility, when it is inserted into the blood vessel, it can minimize the damage to the blood vessel wall.
Abstract:
There are provided a method of doping impurities, a method of manufacturing a solar cell, and a solar cell. In the doping method, a diffusion protective pattern having at least one opening is formed on a substrate that contains a first area and a second area. A first dopant is doped in the first area by using a first mask to form a first doped pattern. A second dopant is doped in the second area by using a second mask to form a second doped pattern. The first dopant and the second dopant may be doped in neighboring first and second areas, respectively, without creating a short circuit by using the first mask, the second mask, and the diffusion protective pattern.
Abstract:
Solar cells include a substrate having a light collecting surface thereon and a P-N rectifying junction within the substrate. The P-N rectifying junction includes a base region of first conductivity type (e.g., p-type) and a semiconductor layer of second conductivity type extending between the base region and the light collecting surface. A trench is also provided, which extends through the semiconductor layer and into the base region. First and second electrodes are provided adjacent the light collecting surface. The first electrode is electrically coupled to the semiconductor layer and the second electrode is electrically coupled to the base region, at a location adjacent a bottom of the trench.
Abstract:
A biopsy needle device for collecting a tissue sample by penetrating a living body includes a needle. The needle includes a tip portion having a cross-sectional area getting gradually smaller toward a front end thereof and a tissue container portion arranged behind the tip portion for holding the tissue sample therein. The tip portion includes a rear surface contiguous to the tissue container portion and a recess formed on the rear surface.