Abstract:
An electrochromic device having an electrochromic layer and an electrolyte sandwiched between electrodes. A charge compensator ion permeable layer is interposed between the electrochromic layer and the electrolyte. The latter-mentioned interposing layer serves as a protective overcoat for the electrochromic layer and minimizes the structural decay of the cell which might otherwise occur. SUFIELD OF THE INVENTIONThe present invention relates to electrochromic devices and, more particularly, to such a device having a protective overcoat layer interposed between an electrochromic layer and an electrolyte.BRIEF DESCRIPTION OF THE PRIOR ARTThe prior art has recognized the usefulness of electrochromic devices wherein the electromagnetic absorption characteristics may be reversibly altered by a controlled electric field. The device is particularly useful as a display device or in light valve-type applications.U.S. Pat. No. 3,708,220 issued to Meyers describes a device which consists of an electrochromic material in contact with a semisolid electrolyte gel sandwiched between a pair of electrodes. U.S. Pat. No. 28,188, issued to Deb et al, discloses a completely solid state electrochromic device which utilizes a current carrier permeable layer positioned between an electrochromic layer and a conductive layer. The reissue patent states that the structure set forth therein is an improvement over basic electrochromic cells that had previously included only an electrochromic layer sandwiched between two conductive layers. In U.S. Pat. No. 3,840,287, issued to Witzke et al, there is an electrochromic device which is described as including two electrochromic layers in different states and an electrolyte layer which is not limited to semisolid gels. In the Meyers and Witzke patents, the structure included an electrolyte or color assisting agent, respectively, which is described as being in direct contact with an electrochromic layer. This contact was thought necessary to insure ionic charge transport from the electrolyte to the electrochromic layer. However, these prior art structures have been found to lack a certain desirable cycling capability of lifetime due to an observable decay in the cell due to a deterioration of the electrochromic layer -- electrolyte interface, which is due to the contact therebetween.BRIEF DESCRIPTION OF THE PRESENT INVENTIONThe present invention relates to a novel structure for extending the life of an electrochromic device, having an electrolyte or color assisting agent, by interposing a protective overcoat layer between the electrolyte or color assisting agent and the electrochromic layer. More particularly, the electrochromic device comprises a pair of electrodes, there being between the electrodes at least one layer of electrochromic material, an electrolyte layer, and a protective overcoat layer between the electrochromic layer and the electrolyte layer. The protective overcoat layer is a substantially insulating dielectric layer. Normally, one would expect that the placement of a substantially insulating dielectric layer separating the electrochromic layer and the electrolyte would inhibit the necessary current flow of the device and be detrimental to the normal operation of the device. Contrary to this, an unexpected synergistic result is obtained. It has been discovered that the insertion of certain substantially insulating materials in the form of thin films not only does not adversely affect the operation of the device, but rather substantially increases the life of the device by inhibiting attack and degradation of the electrochromic layer.
Abstract:
The embodiments of the present disclosure provide a framework for managing lifecycle of a project in an organization. The framework comprises a project management module configured to provide plurality of guidelines to execute a project in a global context, a behavior module configured to provide a plurality of skill sets required for the effective execution of the project, a focus module configured to generate efficient outcomes in the project performance and a support module configured to provide integrated project management. The framework provides multiple levels of project management certifications to address the competency needs as per various roles requirement in an organization. The disclosure also provides a method of implementing project management certifications which are mapped as per various roles requirements in an organization.
Abstract:
The invention relates to a liquid radiation curable resin capable of curing into a solid upon irradiation comprising: (A) from about 0 to about 12 wt % of a cycloaliphatic epoxide having a linking ester group; (B) from about 30 to about 65 wt % of one or more epoxy functional components other than A; (C) from about 10 to about 30 wt % of one or more oxetanes; (D) from, about 1 to about 10 wt % of one or more polyols; (E) from about 2 to about 20 wt % of one or more radically curable (meth) acrylate components; (F) from about 2 to about 12 wt % of one or more impact modifiers; (G) from about 0.1 to about 8 wt % of one or more free radical photoinitiators; and (H) from about 0.1 to about 8 wt % of one or more cationic photoinitiators; wherein the liquid radiation curable resin has a viscosity at 30° C. of from about 600 cps to about 1300 cps.
Abstract:
Methods and apparatus are provided for plasma-assisted processing multiple work pieces in a manufacturing line. The manufacturing line can include a plurality of microwave cavities, each of the microwave cavities igniting and sustaining a microwave plasma. Work pieces can be shuttled between the plurality of microwave cavities on a conveyance system that controls the positioning of each of the work pieces.
Abstract:
The invention is a radiation curable liquid resin that can be used to make a clear and colorless, three-dimensional article by a stereolithography process. The clear and colorless three-dimensional articles have a clarity and transmittance of greater than about 67% as measured by UV-Visible spectrophotometer in the 400-500 nm range; and a lack of color as measured by a b* value of between about minus 0.5 (−0.5) and about positive 2.5 (+2.5) in the CIELAB color space using a spectrophotometer in the visible wavelengths of 400-750 nm.
Abstract:
Methods and systems (10) for plasma-assisted nitrogen surface-treatments are provided. The method can include subjecting a gas (24) to electromagnetic radiation (26) in the presence of a plasma catalyst (100, 120, 140) to initiate a plasma containing nitrogen. The surface region of an object can be exposed to the plasma for a period of time sufficient to transfer at least some of the nitrogen from the plasma to the object through the surface region.
Abstract:
A framework for managing a lifecycle of a program in an organization is provided. The framework includes a process module, a guiding module, a program lifecycle mapping module, and a matrix module. The process module provides a plurality of process guidelines for the one or more stages of the project management lifecycle. Further, the process module includes a strategic planning module, a financial management module, a risk management module, an organization change management module, a stake holder management module, a knowledge management module, a contractual compliance module, a governance module and a program setup module. The guiding module integrates a plurality of organizational attributes with the process guidelines of the process module. The program lifecycle mapping module maps the plurality of process guidelines with the one or more stages of the life cycle. The matrix module provides assignment of program management roles to one or more participants.
Abstract:
A liquid crystal device comprises of a pair of opposed substrates defining a cell gap. Each substrate has an electrode disposed on a surface facing the other substrate. A plurality of spacers are randomly disposed in the cell gap and extend from one substrate to the other substrate, wherein a polymerization enhancing or initiating compound is not disposed on the surface of the spacers. Polymer columns are randomly disposed between the opposed substrates, extending from one substrate to the other, at least a portion of which are disposed around and immobilize the spacers in the cell gap. A liquid crystal material is disposed in the cell gap. A method for making a liquid crystal device is also provided. The internal columnar structures provide stability against mechanical pressure enabling the fabrication of durable, flexible LC display devices using plastic substrates for applications in portable and handheld devices.
Abstract:
Plasma-assisted methods and apparatus that use multiple radiation sources are provided. In one embodiment, a plasma is ignited by subjecting a gas in a processing cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, which may be passive or active. A controller can be used to delay activation of one radiation source with respect to another.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma for various plasma processes and treatments. In one embodiment, a plasma is ignited by subjecting a gas in a multi-mode processing cavity to electromagnetic radiation having a frequency between about 1 MHz and about 333 GHz in the presence of a plasma catalyst, which may be passive or active. A passive plasma catalyst may include, for example, any object capable of inducing a plasma by deforming a local electric field. An active plasma catalyst can include any particle or high energy wave packet capable of transferring a sufficient amount of energy to a gaseous atom or molecule to remove at least one electron from the gaseous atom or molecule, in the presence of electromagnetic radiation.