Abstract:
An indicating lubricant additive comprising a color-changable polymer having an outer layer of a first color, and an intermediate layer of a second color; and a lubricant sensing dipstick comprising a circuit housing, an elongated body having a proximal end and a distal end, and lubricant sensing means disposed at said distal end, wherein in one embodiment, the sensing means detects a change in the indicating lubricant additive that is. present in a lubricant.
Abstract:
An apparatus for treating a biological organism comprising a device for emitting and delivering energy to the biological organism, a programmable controller for varying the type and amount of energy emitted, and apparatus for sensing a condition of the biological organism.
Abstract:
The invention is a method for detecting failures in an analyzer for conducting clinical assays. Potential errors that can result in assay failures in an analyzer are identified, as are their potential sources. The probability that an error source so identified will result in a clinically significant error is also determined. Available potential detection measures corresponding to the source of potential errors are identified with a combination of such measures selected and implemented based on their probability of detecting such errors within an acceptable limit with a concomitant low probability of the false detection of an assay failure. Each of the measures selected are functionally independent of others chosen to address the source of the error and are not subject to the same inherent means of failed detection. Applications of the method in a clinical analyzer are also presented.
Abstract:
An electromagnetic immune tissue invasive system includes a primary device housing. The primary device housing having a control circuit therein. A shielding is formed around the primary device housing to shield the primary device housing and any circuits therein from electromagnetic interference. A lead system transmits and receives signals between the primary device housing. The lead system is either a fiber optic system or an electrically shielded electrical lead system.
Abstract:
A collapsible stand (1) for a book has, when erected for use, an upper member (7) that provides a support surface for a book, first and second side wall members (8) that are hingedly connected to the upper member (7), and front and rear wall members (10,11), that are hingedly connected to the side wall members (8). The upper member (7) and the front and rear wall members (10,11) are each foldable laterally about substantially the center line of the stand (1). The arrangement is such that folding the upper member (7) upwards from the erected position causes the first and second side wall members (8) to collapse towards one another and the front and rear wall members (10,11) to fold inwards.
Abstract:
The disclosure provides various embodiments of catheters having articulable ends that can be used for various procedures. Embodiments of methods are also provided that can be performed with catheters in accordance with the present disclosure.
Abstract:
Devices and methods are disclosed for the treatment or repair of regurgitant cardiac valves, such as a mitral valve. An illustrative annuloplasty device can be placed in the coronary sinus to reshape the mitral valve and reduce mitral valve regurgitation. An improved protective device can be placed between the annuloplasty device and an underlying coronary artery to inhibit compression of the underlying coronary artery by the annuloplasty device in the coronary sinus. In addition, the protective device can inhibit compression of the coronary artery from inside the heart, such as from a prosthetic mitral valve that exerts radially outward pressure toward the coronary artery. The annuloplasty device can also create an artificial inner ridge or retaining feature projecting into the native mitral valve region to help secure a prosthetic mitral valve.
Abstract:
A medical device enables effective magnetic resonance imaging inside a lumen of a medical device. The medical device includes a plurality of conductive traces formed on a substrate. The conductive traces form an inductive-capacitance circuit or a resistive-inductive-capacitance circuit. The inductive-capacitance circuit or resistive-inductive-capacitance circuit is tuned to a frequency associated with magnetic resonance imaging, an operating frequency associated with a magnetic resonance imaging scanner, a harmonic of an operating frequency associated with a magnetic resonance imaging scanner, or a sub-harmonic of an operating frequency associated with a magnetic resonance imaging scanner.
Abstract:
A medical device enables effective magnetic resonance imaging inside a lumen of a medical device. The medical device includes a plurality of conductive traces formed on a substrate. The conductive traces form an inductive-capacitance circuit or a resistive-inductive-capacitance circuit. The inductive-capacitance circuit or resistive-inductive-capacitance circuit is tuned to a frequency associated with magnetic resonance imaging, an operating frequency associated with a magnetic resonance imaging scanner, a harmonic of an operating frequency associated with a magnetic resonance imaging scanner, or a sub-harmonic of an operating frequency associated with a magnetic resonance imaging scanner.
Abstract:
An electromagnetic interference immune defibrillator lead has a first electromagnetic insulating layer. A first layer is formed on the first electromagnetic insulating layer, the first layer having a plurality of first conductive rings composed of first conductive material, each first conductive ring being separated by first insulating material. A second electromagnetic insulating layer is formed on the first layer. A second layer is, formed on the second electromagnetic insulating layer, the second layer having a plurality of second conductive rings composed of second conductive material, each second conductive ring being separated by second insulating material. A third electromagnetic insulating layer is formed on the second layer. The second conductive rings of second conductive material are positioned such that a second conductive ring overlaps a portion of a first conductive ring and overlaps a portion of a second conductive ring, the second conductive ring being adjacent to the first conductive ring. The second electromagnetically insulating layer is composed of a self-healing dielectric material.