Abstract:
Dual-lumen catheters for actively mixing two or more fluid components such that they react to form a more viscous pre-polymer formulation at or near the distal tip of the catheter are describe herein. The mixing dynamics within the dual-lumen catheter may be varied depending on the relative viscosity of each individual fluid component, as well as the viscosity of the resulting pre-polymer formulation.
Abstract:
Delivery systems for a polymeric tubular implant, kits that include such delivery systems, and methods of treating patients by implanting tubular implants using the delivery systems. The delivery systems include an inner shaft, an expandable member slidably disposed about the inner shaft and configured to receive the tubular implant, and a tubular outer shaft disposed about the inner shaft.
Abstract:
Systems, methods and kits relating to in-situ forming polymer foams for the treatment of aneurysms or fluid filled spaces are disclosed. The systems include an insertable medical device and an in-situ forming foam of lava like materials with a fast forming outer skin and a slower hardening interior that is formed from a one-, two- or multi-part formulation. When used to treat an aneurysm, the foam is placed into contact with at least a portion of an exterior surface of the medical device and/or the tissue surface of the aneurysm.
Abstract:
Delivery systems for a polymeric tubular implant, kits that include such delivery systems, and methods of treating patients by implanting tubular implants using the delivery systems. The delivery systems include an inner shaft, an expandable member slidably disposed about the inner shaft and configured to receive the tubular implant, and a tubular outer shaft disposed about the inner shaft.
Abstract:
Delivery systems for in situ forming foam formulations are provided. The devices may include various actuation mechanisms and may entrain air into fluid formulation components in a variety of ways, including mixing with air and the addition of compressed gas.
Abstract:
Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).
Abstract:
Disclosed is a self-expanding medical implant for placement within a lumen of a patient. The implant comprises a woven or non-woven structure having a substantially tubular configuration, and is designed to be low-profile such that it is deliverable with a small diameter catheter. The implant has a high recoverability and desired mechanical properties.
Abstract:
Disclosed is a self-expanding medical implant for placement within a lumen of a patient. The implant comprises a woven or non-woven structure having a substantially tubular configuration, and is designed to be low-profile such that it is deliverable with a small diameter catheter. The implant has a high recoverability and desired mechanical properties.
Abstract:
Systems and methods related to polymer foams are generally described. Some embodiments relate to compositions and methods for the preparation of polymer foams, and methods for using the polymer foams. The polymer foams can be applied to a body cavity and placed in contact with, for example, tissue, injured tissue, internal organs, etc. In some embodiments, the polymer foams can be formed within a body cavity (i.e., in situ foam formation). In addition, the foamed polymers may be capable of exerting a pressure on an internal surface of a body cavity and preventing or limiting movement of a bodily fluid (e.g., blood, etc.).
Abstract:
The present invention relates generally to systems and methods and systems for generating polymer foams within body cavities to locate and/or control bleeding. The present invention further relates to methods and systems for generating polymer foams within non-compressible wounds to control or stop bleeding. The present invention further relates to the use of foams and gels for medical and cosmetic purposes.