Abstract:
A fuel reformer including a reaction container including a first chamber, a first reactor in the first chamber, the first reactor, including a first catalyst, being configured to produce a first reformate by performing a steam reforming reaction on a first fuel, and having a first gas hourly space velocity (GHSV) at a set flow rate, a first heat source thermally connected to the first reactor, and a second reactor connected to the first reactor, the second reactor including a second catalyst, being configured to produce a second reformate having a lower carbon monoxide content than the first reformate, and having a second GHSV greater than the first GHSV at the set flow rate.
Abstract:
A system and methodology that can minimize disturbance during an AC operation associated with a memory, such as, program, read and/or erase, is provided. The system pre-charges all or a desired subset of the bit lines in a memory array to a specified voltage, during an AC operation to facilitate reducing AC disturbances between neighboring cells. A pre-charge voltage can be applied to all bit lines in a block in the memory array, or to bit lines associated with a selected memory cell and neighbor memory cells adjacent to the selected memory cell in the block. The system ensures that source and drain voltage levels can be set to desired levels at the same or substantially the same time, while selecting a memory cell. This can facilitate minimizing AC disturbances in the selected memory cell during the AC operation.
Abstract:
A plate-type heat exchanger for use in a fuel cell system that has a fuel cell stack and a reformer is provided. The heat exchanger includes a substrate and a pair of cover plates. The substrate has a first face and a second face opposite to the first face. The substrate is disposed between the cover plates, and combined with the cover plates to form a first passageway and a second passageway. The first passageway is formed in the first face and circulates steam discharged from the fuel cell stack. The steam or water condensed from the steam is supplied to a water supply source. The second passageway is formed in the second face, and circulates water supplied from the water supply source. The water is supplied to the reformer after the circulation. The heat exchanger of the present invention improves performance and efficiency of a fuel cell system.
Abstract:
A carbon monoxide treatment apparatus according to an exemplary embodiment of the present invention includes: a reactor body; a partitioning plate located inside the reactor body for partitioning an internal space of the reactor body into a first section and a second section; a channel member in the first section for transporting an introduced gas including a reformed gas and an oxidant gas to the second section; and a reaction unit around the channel member of the first section for reducing a concentration level of carbon monoxide in the introduced gas moving through the first section by utilizing a preferential oxidation reaction of the carbon monoxide and the oxidant gas of the introduced gas, wherein moisture of the introduced gas that has been partially condensed when passing through the channel member is stored in the second section.
Abstract:
Oscillators and a method of operating the same are provided, the oscillators include at least one oscillation device including a first magnetic layer having a magnetization direction that is variable, a second magnetic layer having a pinned magnetization direction, and a non-magnetic layer disposed between the first magnetic layer and the second magnetic layer. The oscillation device is configured to generate a signal having a set frequency. The oscillators further include a driving transistor having a drain connected to the at least one oscillation device, and a gate to which a control signal for controlling driving of the oscillation device is applied.
Abstract:
A heater for heating a reformer of a fuel cell system includes a combustion chamber having a combustion catalyst layer; a distributor having an inner space and uniformly distributing a combustion fuel and an oxidant flowing along the inner space to the combustion catalyst layer of the combustion chamber; and an igniter igniting the combustion fuel and the oxidant, wherein the igniter is placed in the inner space of the distributor. Thus, the igniter is protected from combustion heat of the combustion catalyst layer and thus has improved durability.
Abstract:
A fuel reforming apparatus includes an oxidation reaction unit in which an oxidation catalyst is formed, a reforming reaction unit in which a reforming catalyst is formed, and an ignition unit for igniting a hydrocarbon-containing fuel and an oxidant and preheating the oxidation catalyst in an early driving stage. The oxidation reaction unit has a first section and a second section respectively formed opposite to each other with the oxidation catalyst interposed therebetween and forms a stream of the fuel and the oxidant flowing to the second section through the oxidation catalyst from the first section, the ignition unit being located in the second section.
Abstract:
A fuel cell system comprises: a fuel container for storing fuel liquefied with pressure; a reformer for generating hydrogen from the fuel through a catalyst reaction based on heat energy; an electric generator for generating electricity by transforming energy of an electrochemical reaction between hydrogen and oxygen into electric energy; a condenser for condensing water produced in the electric generator; and a heat exchanger passing through the condenser for cooling the condenser by latent heat of the fuel. With this configuration, cooling water cooled by latent heat of a fuel container is employed to cool the condenser without using a separate cooler. Furthermore, air is mixed with butane fuel without using a separate power unit, so that it is possible to achieve a more compact and highly efficient fuel cell.
Abstract:
Providing for suppression of room temperature electronic drift in a flash memory cell is provided herein. For example, a soft program pulse can be applied to the flash memory cell immediately after an erase pulse. The soft program pulse can help to mitigate dipole effects caused by non-combined electrons and holes in the memory cell. Specifically, by utilizing a relatively low gate voltage, the soft program pulse can inject electrons into the flash memory cell proximate a distribution of uncombined holes associated with the erase pulse in order to facilitate rapid combination of such particles. Rapid combination in this manner reduces dipole effects caused by non-combined distributions of opposing charge within the memory cell, reducing room temperature program state drift.
Abstract:
An oscillator includes: a plurality of free layers and a non-magnetic layer disposed between the plurality of free layers. Each of the plurality of free layers has perpendicular magnetic anisotropy or in-plane magnetic anisotropy. Magnetization directions of the free layers are periodically switched such that a signal within a given frequency band oscillates.