Abstract:
A method and apparatus are provided providing a touch screen having multipoint sensing and/or force based sensing and feedback capability useful in many applications which extend beyond traditional computer applications. The touch screen can be located in many non-traditional locations as well, such as desks, tables, walls, vehicles, and the like. The apparatus may be used by a single user, or multiple users, employing fingers, hands, feet and other body portions, if desired or practical. Related applications for virtual image or physical control applications are also disclosed.
Abstract:
A method and apparatus for interactive TV camera based games in which position or orientation of points on a player or of an object held by a player are determined and used to control a video display. Both single camera and stereo camera pair based embodiments are disclosed, preferably using stereo photogrammetry where multi-degree of freedom information is desired. Large video displays, preferably life-size may be used where utmost realism of the game experience is desired.
Abstract:
Method and apparatus is disclosed to enhance the quality and usefulness of picture taking and other image acquisition for pleasure or business purposes. In a preferred embodiment, stereo photogrammetry is combined with digital image acquisition to acquire or store scenes and poses of interest, and/or to interact with the subject in order to provide data to or from a computer. This data may be utilized to maximize the effectiveness of photographic sessions, particularly digital still photography or cine-photography. A further embodiment discloses associated displays and teaching apparatus.
Abstract:
Disclosed are methods and apparatus for motivating persons to undertake exercise, employing camera based computer monitoring of persons and/or exercise apparatus, and displays of video data, which may be derived from such monitored information.
Abstract:
Disclosed herein are new forms of computer inputs particularly using TV Cameras, and providing affordable methods and apparatus for data communication with respect to people and computers using optically inputted information from specialized datum's on objects and/or natural features of objects. Particular embodiments capable of fast and reliable acquisition of features and tracking of motion are disclosed, together with numerous applications in various fields of endeavor.
Abstract:
Affordable methods and apparatus are disclosed for inputting position, attitude (orientation) or other object characteristic data to computers for the purpose of Computer Aided Design, Painting, Medicine, Teaching, Gaming, Toys, Simulations, Aids to the disabled, and internet or other experiences. Preferred embodiments of the invention utilize electro-optical sensors, and particularly TV Cameras, providing optically inputted data from specialized datum's on objects and/or natural features of objects. Objects can be both static and in motion, from which individual datum positions and movements can be derived, also with respect to other objects both fixed and moving. Real-time photogrammetry is preferably used to determine relationships of portions of one or more datums with respect to a plurality of cameras or a single camera processed by a conventional PC.
Abstract:
Methods and apparatus for “Intelligent” control of production processes such as machining, casting, heat treating and welding are disclosed. The key enabler of such control is electro-optical or other suitable sensors, generally non contact, capable of rapidly and accurately acquiring data from parts and tools used to produce them in a production “in-process” environment. Systems are disclosed to control not only the instant operation, but those processes connected therewith, both upstream and downstream. Data bases are generated and knowledge bases are used. Application of the invention can improve quality and productivity, and allow the production of parts which have unusual or individual material characteristics.
Abstract:
Methods for assembling, handling, and fabricating are disclosed in which targets are used on objects. The targets can be specifically applied to the object, or can be an otherwise normal feature of the object. Conveniently, the targets are removable from the object or covered by another object during an assembling process. One or more robots and imaging devices for the targets are used. The robots can be used to handle or assemble a part, or a fixture may be used in conjunction with the robots. Conveniently, the CAD design system is used in designing the targets as well as for the assembly process using the targets. A plurality of targets can also be used to monitor and inspect a forming process such as on a sheet panel.
Abstract:
Methods and apparatuses for assemblying, handling, and fabrication are disclosed in which targets are used on objects. The targets can be specifically applied to the object, or can be an otherwise normal feature of the object. Conveniently, the targets are removable from the object or covered by another object during an assemblying process. One or more robots and imaging devices for the targets are used. The robots can be used to handle or assemble a part, or a fixture may be used in conjunction with the robots. Conveniently, the CAD design system is used in designing the targets as well as for the assembly process using the targets. A plurality of targets can also be used to monitor and inspect a forming process such as on a sheet panel.
Abstract:
This invention discloses method and apparatus for optically determining the dimension of part surfaces. Particular embodiments describe optical triangulation based coordinate measurement machines capable of accurate measurement of complex surfaces, such as gear teeth and turbine blades. Other embodiments provide highly useful sensors for robot guidance and related purposes. Up to 5 axis sensing capability is provided on surfaces of widely varying form.