Abstract:
In accordance with the invention, a novel gene translocation, (5q32, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of CD74 with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The CD74-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The disclosed identification of the new fusion protein enables new methods for determining the presence of these mutant ROS kinase polypeptides in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides, which are also provided by the invention.
Abstract:
A reagent for classifying and counting leukocytes containing (1) a cyanine fluorescent dye; and (2) a glycoside compound; a reagent kit containing the reagent for classifying and counting leukocytes as well as its preparation process; and a process for classifying and counting blood cells using the reagent or kit are provided. Using the reagent, kit and/or process provided, leukocytes can be classified and counted in four groups with a high degree of differentiation and a better classification among each subpopulation of leukocytes, especially in that it successfully addresses the indistinct classification between lymphocytes and monocytes and between the eosinophils and neutrophils in a scattergram.
Abstract:
Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides. The disclosed identification of this new fusion protein enables methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer characterized by the mutant polynucleotides or polypeptides.
Abstract:
The invention discloses binding agents to the E746-A750 deletion and the L858R point mutations in the epidermal growth factor receptor (EGFR) molecule, and methods for use thereof, including methods for the diagnosis and treatment of cancer.
Abstract:
A reagent for classifying and counting leukocytes containing (1) a cyanine fluorescent dye; and (2) a glycoside compound; a reagent kit containing the reagent for classifying and counting leukocytes as well as its preparation process; and a process for classifying and counting blood cells using the reagent or kit are provided. Using the reagent, kit and/or process provided, leukocytes can be classified and counted in four groups with a high degree of differentiation and a better classification among each subpopulation of leukocytes, especially in that it successfully addresses the indistinct classification between lymphocytes and monocytes and between the eosinophils and neutrophils in a scattergram.
Abstract:
The invention discloses novel phosphorylation sites identified in signal transduction proteins and pathways, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: adaptor/scaffold proteins, adhesion/extracellular matrix protein, apoptosis proteins, calcium binding proteins, cell cycle regulation proteins, chaperone proteins, chromatin, DNA binding/repair/replication proteins, cytoskeletal proteins, endoplasmic reticulum or golgi proteins, enzyme proteins, G/regulator proteins, inhibitor proteins, motor/contractile proteins, phosphatase, protease, Ser/Thr protein kinases, Protein kinase (Tyr)s, receptor/channel/cell suface proteins, RNA binding proteins, transcriptional regulators, tumor suppressor proteins, ubiquitan conjugating system proteins and proteins of unknown function.
Abstract:
The invention discloses 318 novel phosphorylation sites identified in carcinoma, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
Abstract:
The invention discloses novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
Abstract:
The invention discloses 322 novel acetylation sites identified in various cancers, peptides (including AQUA peptides) comprising a acetylation site of the invention, antibodies specifically bind to a novel acetylation site of the invention, and diagnostic and therapeutic uses of the above.
Abstract:
The invention discloses 432 novel acetylation sites identified in signal transduction proteins and pathways underlying human protein acetylation signaling pathways, and provides acetylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these acetylated sites/proteins, as well as methods of using the reagents for such purpose. Among the acetylation sites identified are sites occurring in the following protein types: Acetyltransferases, Adaptor/Scaffold proteins, Actin binding proteins, Adhesion proteins, Apoptosis proteins, Calcium-binding proteins, Cell Cycle Regulation proteins, Cell Surface proteins, DNA binding proteins, DNA replication proteins, Channel proteins, Chaperone proteins, Cellular Metabolism enzymes, Cytoskeletal proteins, DNA repair proteins, Endoplasmic reticulum proteins, Enzyme proteins, G protein and GTPase Activating proteins, Guanine Nucleotide Exchange Factors, Helicase proteins, Isomerase proteins, Extracelluar matrix proteins, Hydrolases, Ligase proteins, Lipid kinases, Inhibtor proteins, Lipid Binding proteins and Lyases.