Abstract:
The present invention relates to a stress stable lathering skin cleansing liquid composition comprising by weight parts of the liquid composition:(a) from about 0.5 parts to 10 parts of a stabilizer; for example trihydroxystearin;(b) from about 1 part to about 80 parts of lipid skin moisturizing agent;(c) from about 1 part to about 30 parts of surfactant having a combined CMC equilibrium surface tension value of from 15 to 50;(d) water;wherein said stress stable lathering skin cleansing liquid composition has a Lipid Deposition Value (LDV) of from about 5 to about 100 and wherein said composition is stable for at least two weeks at 100 F.
Abstract:
Techniques for providing a direct injection semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a direct injection semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. At least one of the plurality of memory cells may include a first region coupled to a respective bit line of the array and a second region coupled to a respective source line of the array. At least one of the plurality of memory cells may also include a body region spaced apart from and capacitively coupled to a respective word line of the array, wherein the body region may be electrically floating and disposed between the first region and the second region. At least one of the plurality of memory cells may further include a third region coupled to a respective carrier injection line of the array and wherein the respective carrier injection line may be one of a plurality of carrier injection lines in the array that are coupled to each other.
Abstract:
Techniques for providing a direct injection semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a direct injection semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. At least one of the plurality of memory cells may include a first region coupled to a respective bit line of the array and a second region coupled to a respective source line of the array. At least one of the plurality of memory cells may also include a body region spaced apart from and capacitively coupled to a respective word line of the array, wherein the body region may be electrically floating and disposed between the first region and the second region. At least one of the plurality of memory cells may further include a third region coupled to a respective carrier injection line of the array and wherein the respective carrier injection line may be one of a plurality of carrier injection lines in the array that are coupled to each other.
Abstract:
Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.
Abstract:
An integrated redundancy architecture for an embedded memory system whereby a third memory element is added to the redundancy architecture such that all row and column fails may be stored in real-time. Architecture (20) includes a first memory element (22) (FME 22) having a register (24), a second memory element (26) (SME 26) having a register (28), a third memory element (30) (TME 30) having a register (32), and a finite state machine (34) (FSM 34) having a decision algorithm (36). FME (22), SME (26), TME (30), and FSM (34) are electrically connected to a built-in self-test (BIST) module (38). BIST module (38) outputs failed row and column addresses (40), also referred to as “fails,” for rows and columns that are identified as defective during the BIST to the memory elements and FSM (34). FSM (34) allocates redundancy resources of the memory system according to decision algorithm (36).
Abstract:
Disclosed is a stress stable lathering skin cleansing liquid composition comprising by weight parts of the liquid composition:(a) from about 0.5 parts to 10 parts of a crystalline, hydroxyl-containing stabilizer;(b) from about 1 part to about 80 parts of lipid skin moisturizing agent;(c) from about 1 part to about 30 parts of surfactant having a combined CMC equilibrium surface tension value of from 15 to 50;(d) water.Such stress stable lathering skin cleansing liquid compositions have a Lipid Deposition Value (LDV) of from about 5 to about 100. Such compositions are also stable for at least two weeks at 100.degree. F.
Abstract:
Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate.
Abstract:
A plurality of semiconductor devices are provided on a carrier for testing or burning-in. The carrier is then cut up to provide single chip-on-carrier components or multi-chip-on-carrier components. The carrier is used as a first level package for each chip. Thus, the carrier serves a dual purpose for test and burn-in and for packaging. A lead reduction mechanism, such as a built-in self-test engine, can be provided on each chip or on the carrier and is connected to contacts of the carrier for the testing and burn-in steps. The final package after cutting includes at least one known good die and may include an array of chips on the carrier, such as a SIMM or a DIMM. The final package can also be a stack of chips each mounted on a separate carrier. The carriers of the stack are connected to each other through a substrate mounted along a side face of the stack that is electrically connected to a line of pads along an edge of each carrier.
Abstract:
An electronic device including: a semiconductor substrate having an array of gate conductors, each having a length and a width, comprised of dummy gate conductors and functional gate conductors extending in a widthwise direction, the gate conductors positioned substantially parallel to each other in the widthwise direction and periodically spaced apart a fixed distance in a direction substantially perpendicular to the widthwise direction.