Abstract:
The invention is a frequency stabilized passive Q-switch laser, which has the advantages of small volume, simple structure, no need for high power voltage, etc. It has been a long time that timing jitter in conventional lasers is so large that they can not be applied to fields such as distance measurement. This invention utilizes an optical external modulation method to stabilize the repetition rate of the passive Q-switch, and thus to decrease its timing jitter. At the same time, the repetition rate of the Q-switch laser can be controlled by the same technology to meet various application needs.
Abstract:
A light emitting diode package module structure comprises a LED module received in a reflection cup, a light transmitting color conversion member disposed on an annular surface of the reflection cup, a stationary package sleeved on the reflection cup in such a manner that the press portion of the stationary package is pressed against the light transmitting color conversion member, and the stop portions of the positioning legs of the stationary package are positioned against the bottom of the reflection cup. In this way, the light transmitting color conversion member is fixed to the reflection cup by the stationary package without the use of adhesive agents, which consequently simplifies the packaging procedure and reduces the package cost.
Abstract:
A double-variable-curvature lensed fiber includes a cylindrical fiber body defining a central axis, and a lens body connected integrally to one end of the fiber body. The lens body has first and second inclined curved surfaces disposed respectively at opposite sides of an imaginary plane on which the central axis is disposed, and a light-transmissive portion formed between the first and second inclined curved surfaces. The light-transmissive portion has a first radius of curvature when viewed from a first direction, and a second radius of curvature when viewed from a second direction. The second radius of curvature is different from the first radius of curvature.
Abstract:
The present invention relates to a conical wedge-shaped lensed fiber and the method of making the same. The method comprises: (a) providing an optical fiber having a central axis and an end; (b) machining the end of the optical fiber to form a flat end face; (c) machining the end of the optical fiber to form a conical region; (d) machining one side of the conical region to form a flat first surface; (e) machining another side of the conical region to form a flat third surface, wherein the first surface and the third surface intersect at a intersecting line that is perpendicular to the central axis; and (f) fusing the intersecting line to form a lens. The method has simplified fabricating processes and need not to set up any particular angle of rotation of the fiber. Therefore, the fabricating time and cost are reduced, and the coupling efficiency of the lensed fiber is up to 90%.
Abstract:
An integrated circuit (IC) package structure with an electromagnetic interference (EMI) shielding structure utilizes double-layer successive cladding process. A dielectric coating layer and an EMI shielding layer material are sequentially coated on surface of a carrying substrate, an IC on the carrying substrate, and all the other devices. The EMI shielding layer is closely adhered to and bonded on a ground metal area exposed on an upper surface of the carrying substrate, the EMI shielding layer on the package is connected to a ground plane under the carrying substrate in series, so as to form a protection cover having a closed EMI shielding space to isolate the interference of electromagnetic waves from outside.
Abstract:
The present invention relates to a method and apparatus for measuring the position of a ferrule of a laser module. The apparatus comprises an XYZ stage, a base, a receiving portion and a laser displacement meter (LDM). The XYZ stage is used for moving in three-dimensional directions. The base has a first slot by which the base is detachably connected to the XYZ stage. The receiving portion is fixed to the base and has a second slot. The laser displacement meter is used for measuring the distance between the ferrule and the laser displacement meter. The laser displacement meter is detachably connected to the receiving portion in the second slot. Whereby, the quantitative measurement and correction to the effect of the postweld-shift (PWS) on the fiber alignment shifts in laser-welded laser module packaging is achieved. Therefore, the reliable laser modules with high yield and high performance used in low-cost lightwave transmission systems may be developed and fabricated.
Abstract:
The present invention relates to a method and apparatus for measuring the position of a ferrule of a laser module. The apparatus comprises an XYZ stage, a base, a receiving portion and a laser displacement meter (LDM). The XYZ stage is used for moving in three-dimensional directions. The base has a first slot by which the base is detachably connected to the XYZ stage. The receiving portion is fixed to the base and has a second slot. The laser displacement meter is used for measuring the distance between the ferrule and the laser displacement meter. The laser displacement meter is detachably connected to the receiving portion in the second slot. Whereby, the quantitative measurement and correction to the effect of the postweld-shift (PWS) on the fiber alignment shifts in laser-welded laser module packaging is achieved. Therefore, the reliable laser modules with high yield and high performance used in low-cost lightwave transmission systems may be developed and fabricated.
Abstract:
A CNT-PI complex primarily includes polyimide (PI) and carbon nanotubes (CNT) dispersed in the polyimide. The method for producing the CNT-PI complex first disperses carbon nanotubes in a solvent by adding a dispersant and using an ultrasonic oscillator. Then the carbon nanotubes dispersion is mixed with polyamic acid to give a CNT-PI dispersion. The CNT-PI dispersion is then dried to form a film or layer of the CNT-PI complex. The dispersant used in this invention is an ionic liquid including organic cations and inorganic anions. The produced CNT-PI complex possesses good electromagnetic shielding effectiveness and presents better networked structures and electrical conductivity.
Abstract:
A micro-electro-mechanical system (MEMS) microphone module and a manufacturing process thereof are described. A thickness of a transparent temporary cover plate temporarily disposed in a conventional plastic package structure is adjusted. After a mold for a plastic protector is formed, an UV ray is utilized to irradiate the mold to reduce adherence on the temporary cover plate and a back surface of the MEMS acoustic wave sensing chip. Then, the temporary cover plate is removed, and the left space left is the main source for the back-volume of the MEMS microphone. Finally, a tag is covered on the plastic protector, so as to define the whole back-volume and form a closed back-volume. In the above-mentioned process, the size of the back-volume is the same as an area of the whole MEMS microphone chip. In addition, the back-volume can be defined.
Abstract:
The invention relates to an apparatus for fixing a fiber at the center of a ferrule comprising a heating stage, a temperature controller, at least one charge-coupled device, a first moving stage, a processor unit and a solder material feeder. The heating stage is used for mounting and heating the ferrule. The charge-coupled devices are used for monitoring the position of the fiber in the ferrule, and one of the charge-coupled devices is connected to the processor unit so as to measure the eccentric offset of the fiber in the ferrule. The first moving stage is used for mounting the fiber and adjusted the position of the fiber so that one end of the fiber is disposed near a inlet of the ferrule and inserting the fiber into the ferrule after alignment. The solder material feeder is used for sealing the ferrule with the solder material. The present invention also relates to a method for fixing a fiber at the center of a ferrule.