Abstract:
A method for operating a controller may include storing a pseudo noise (PN) sequence provided from a PN sequence generator in an i-th area of a seed table and cyclically shifting the PN sequence from the i-th area to an (i+1)-th area in the table to form the table. The table may include row and column areas. A method for operating a controller may include receiving a sequence from a sequence generator, splitting the sequence into seed units, storing split sequences in a j-th area of the seed table, and forming the table including the seed units corresponding to the split sequences stored in the j-th area. A method for operating a controller may include storing a sequence provided from a sequence generator in a seed table that includes a plurality of areas and cyclically shifting the sequence in the table until a seed is formed in each area.
Abstract:
A decoder includes multiple decoder stages and a controller. The decoder stages perform decoding operations with respect to a received signal using corresponding different decoding algorithms. The controller determines whether the decoding operation performed by one of the decoder stages with respect to the received signal is successful, and controls the decoding operation of each of the other decoder stages in response to a result of the determination.
Abstract:
Nonvolatile memory devices include support memory cell recovery during operations to erase blocks of nonvolatile (e.g., flash) memory cells. A nonvolatile memory system includes a flash memory device and a memory controller electrically coupled to the flash memory device. The memory controller is configured to control memory cell recovery operations within the flash memory device by issuing a first instruction(s) to the flash memory device that causes erased memory cells in the block of memory to become at least partially programmed memory cells and then issuing a second instruction(s) to the flash memory device that causes the at least partially programmed memory cells become fully erased.
Abstract:
The flash memory device includes a control logic circuit and a bit level conversion logic circuit. The control logic circuit programs first through Nth bits of data in a memory cell array of the N-bit MLC flash memory device or reads the first through Nth bits of the data from the memory cell array in response to one of a program command and a read command. The bit level conversion control logic circuit, after the first through Nth bits of the data are completely programmed or read, programs or reads an (N+1)th bit of the data in response to a control signal. The bit level conversion control logic circuit converts voltage levels of voltages, which are used for programming or reading the first through Nth bits of the data, to program or read for 2N cell distributions of 2N+1 cell distributions corresponding to the (N+1)th bit of the data and then programs or reads for other 2N cell distributions.
Abstract:
A method setting a read voltage to minimize data read errors in a semiconductor memory device including multi-bit memory cells. In the method, a read voltage associated with a minimal number of read data error is set based on a statistic value of a voltage distribution corresponding to each one of a plurality of voltage states.
Abstract:
A storage device includes a controller unit and a memory cell array. The controller unit is for outputting data through a first data path or a second data path according to a property of externally supplied input data. The memory cell array includes a first memory and a second memory, and receives and stores the data from the controller unit output through the first and second data paths. The first memory has a different memory cell structure than the second memory.
Abstract:
A decoding method includes performing a first decoding method and performing a second decoding method when decoding of the first decoding method fails. The first decoding method includes updating multiple variable nodes and multiple check nodes using probability values of received data. The second decoding method includes selecting at least one variable node from among the multiple variable nodes; correcting probability values of data received in the selected at least one variable node; updating the variable nodes and the check nodes using the corrected probability values; and determining whether decoding of the second decoding method is successful.
Abstract:
A method, implemented by at least an error correction code (ECC) decoder and a controller, estimates and corrects errors in memory cells. The method includes identifying a first candidate group of memory cells having an error-generation possibility using a first method for error estimation; identifying a second candidate group of memory cells having an error-generation possibility using a second method for error estimation; and correcting errors in at least one cell commonly included in the first and second candidate groups.
Abstract:
Nonvolatile memory devices include support memory cell recovery during operations to erase blocks of nonvolatile (e.g., flash) memory cells. A nonvolatile memory system includes a flash memory device and a memory controller electrically coupled to the flash memory device. The memory controller is configured to control memory cell recovery operations within the flash memory device by issuing a first instruction(s) to the flash memory device that causes erased memory cells in the block of memory to become at least partially programmed memory cells and then issuing a second instruction(s) to the flash memory device that causes the at least partially programmed memory cells become fully erased.
Abstract:
Memory devices and/or memory programming methods are provided. A memory device may include: a memory cell array including a plurality of memory cells; a programming unit configured to apply a plurality of pulses corresponding to a program voltage to a gate terminal of each of the plurality of memory cells, and to apply a program condition voltage to a bit line connected with a memory cell having a threshold voltage lower than a verification voltage from among the plurality of memory cells; and a control unit configured to increase the program voltage during a first time interval by a first increment for each pulse, and to increase the program voltage during a second time interval by a second increment for each pulse. Through this, it may be possible to reduce a width of a distribution of threshold voltages of a memory cell.