Abstract:
An electron emission device includes a base substrate, at least one isolation layer on the base substrate, the isolation layer having a first lateral side and a second lateral side opposite the first lateral side, first and second electrodes on the base substrate along the first and second lateral sides of the isolation layer, respectively, a first electron emission layer between the first electrode and the first lateral side of the isolation layer, and a second electron emission layer between the second electrode and the second lateral side of the isolation layer.
Abstract:
Hybrid composites including carbon nanotubes and a carbide-derived carbon material, electron emitters including the hybrid composites, methods of preparing the electron emitters, and electron emission devices including the electron emitters are provided. Specifically, a hybrid composite includes at least one carbon nanotube and a carbide-derived carbon material. The carbide-derived carbon material is prepared by thermochemically reacting a carbide compound with a halogen-containing gas to extract substantially all of the elements except for the carbon in the carbide compound. Since the carbon nanotubes and the carbide-derived carbon material are hybridized and composited, a screen effect that may occur when large amounts of carbon nanotubes are used can be prevented, and an electron emitter including the hybrid composite has excellent electron emission capabilities, excellent uniformity, and a long lifetime.
Abstract:
A light emission device with improved high voltage stability, and a display device having the light emission device as its light source, the light emission device comprising front and rear substrates disposed to face each other, an electron emission unit disposed on the front substrate and having a plurality of electron emission elements, and a light emission unit including a metal reflective layer formed on the rear substrate and a phosphor layer formed on the metal reflective layer. Each of the electron emission elements includes first electrodes, second electrodes arranged between the first electrodes, and electron emission regions electrically connected to the first electrodes and having a thickness smaller that of the first electrodes.
Abstract:
A method is provided for fabricating an electron emission source which can attain improved electron emission efficiency and has simplified manufacturing processes. Also provided are an electron emission display device and an electron emission display device fabricated using the method of fabricating an electron emission source. The method includes forming an electrode, forming a carbide compound thin film on the electrode and forming a carbide-induced carbon thin film layer from the carbide compound thin film using an etching gas. The electron emission device and the electron emission display device each include a first electrode, a second electrode disposed to face the first electrode, and a carbide-induced carbon thin film layer formed to be electrically connected to f the first electrode or the second electrode.
Abstract:
A method and system for processing surveillance video stored on a video storage system is provided. A universal media control command is received and translated to a local control command specific to a video storage system. The surveillance video is retrieved in response to receipt of the local control command. The surveillance video can be decoded into raw video data and displayed, or be encapsulated within a universal data file. The surveillance video may be subsequently extracted from the universal data file
Abstract:
A composition for preparing an emitter including: flake type carbide-derived carbon which is prepared by thermochemically reacting carbide compounds with halogen-containing gases to extract all elements of the carbide compounds except carbon, an organic solvent and a dispersant. A method of preparing the emitter using the composition for forming the emitter, an emitter prepared using the method and an electron emission device. The emitter has good uniformity and a long lifetime. It can be prepared using a more inexpensive method than using conventional carbon nanotubes. A pattern can be formed by easily regulating the size of the manufactured emitter using an ink jet printer. Non-uniform emission generated by residue when using a conventional printing method can be avoided. Thus, a micro electrode, in which an arc discharge does not occur even in the presence of a strong electric field, can be conveniently manufactured.
Abstract:
A composition for forming an electron emitter, an electron emitter formed using the composition, and a backlight unit including the electron emitter, where dispersion of the electron emission material in the composition is increased, and the composition includes an electron emission material, a vehicle, and carbon-based filler particles.
Abstract:
Disclosed is an electromagnetic shielding material with enhanced shielding effectiveness and mechanical property by employing a carbon nanotube and a metal as an electrical conductor. The electromagnetic shielding material includes a polymer resin for a matrix and two conductive fillers having a carbon nanotube and a metal, wherein a volume percent of the carbon nanotube ranges about 0.2% to about 10% and a volume percent of the metal powder ranges about 7.0% to about 30% so that the total volume percent of the conductive filler is in a range of about 7.2% to about 40%.
Abstract:
A heating device for an electric vehicle, according to an embodiment of the present invention, comprises: a water pump which is for circulating supplied water; a heating resistor which has one or more surface type heating elements formed by means of a heating paste composition and is for heating the circulated water; a water temperature sensor which is for measuring the temperature of the hot water heated by means of the heating resistor; and a control unit which is for adjusting the heating resistor such that the measured temperature measured by means of the water temperature sensor satisfies a set temperature value, wherein the heating paste composition comprises, on the basis of 100 parts by weight of the total heating paste composition, 3˜6 wt % of carbon nanotube particles, 0.5˜30 wt % of carbon nanoparticles, 10˜30 wt % of a mixed binder, 29˜83 wt % of an organic solvent, and 0.5˜5 wt % of a dispersant, wherein the mixed binder has epoxy acrylate, polyvinyl acetal and phenolic resin mixed therein or has hexamethylene diisocyanate, polyvinyl acetal and phenolic resin mixed therein.
Abstract:
A method of controlling access to a multi-bank memory, and an apparatus to perform the method, is provided. For the access control, a stride register is provided to store stride values determined by a processor during a run time. A memory controller controls access to a logical block in row and column directions, in an interleaved manner, the logical block having a width determined according to the stride values stored in the stride register. Accordingly, simultaneous access to a plurality of pieces of data at successive addresses adjacent in the row and column directions may be made.