Abstract:
Provided are an aqueous electrolyte composition including hydrophilic microparticles and a sealed-type primary film battery including an electrolyte layer formed of the aqueous electrolyte composition. In the sealed-type primary film battery, a separation film is interposed between a positive electrode and a negative electrode, and has a plurality of through-holes. A non-flowable electrolyte layer interposed between the positive electrode and the negative electrode includes first and second electrolyte layers extending parallel to the positive electrode and the negative electrode, and a plurality of third electrolyte layers filled in the through-holes of the separation film so as to be integrally connected to the first electrolyte layer and the second electrolyte layer. Due to the third electrolyte layers filled in the through-holes of the separation film, an ion transfer path in the electrolyte layer is shortened. The hydrophilic microparticles are dispersed in the electrolyte layer so as to prevent moisture evaporation.
Abstract:
A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43−, SO42−, and OH−. LiaFebMc(PO4)x(SO4)y(OH)z (1) In the formula, M is at least one element selected from a radical consisting of Mg, Ti, Cr, Mn, Co, Ni, Cu, Zn, Al, and Si, with 0≦a, c≦0.5, 1≦b≦2, 0.5≦x, y, z≦1.5.
Abstract:
Provided is a composition for a foam tire. The composition includes 100 parts by weight of a blend of an olefin block copolymer and a rubber as a polymer matrix, 0.02 to 4 parts by weight of a crosslinking agent, and 1 to 6 parts by weight of a foaming agent. The olefin block copolymer and the rubber are present in amounts of 50 to 80% by weight and 20 to 50% by weight, respectively, based on the total weight of the polymer matrix.
Abstract:
A pouch-type flexible film battery, including: (a) a cathode structure including a cathode pouch, a cathode conductive carbon layer, and a cathode layer; (b) an anode structure including an anode pouch, an anode conductive carbon layer, and an anode layer; and (c) a polymer electrolyte layer that is provided between the cathode and anode structures, that is bonded to the cathode layer and to the anode layer, and that is a gel-type electrolyte having adhesive properties and including a cellulose-based polymer.
Abstract:
Provided are a vacuum-sealing-type flexible-film primary battery and a method of manufacturing the same. The primary battery includes a battery assembly comprising a positive electrode plate including a positive electrode collector having a first conductive carbon layer disposed directly on a surface-treated inner surface of a first pouch and a positive electrode layer disposed on the first conductive carbon layer of the positive electrode collector, a negative electrode plate including a negative electrode collector having a second conductive carbon layer disposed directly on a surface-treated inner surface of a second pouch and a negative electrode layer disposed on the second conductive carbon layer of the negative electrode collector, and an adhesion/post-injection polymer electrolyte layer interposed between the positive electrode plate and the negative electrode plate, wherein the battery assembly is completely sealed. The flexible-film primary battery may employ the pouch as a collector film to improve flexibility. Also, the flexible-film primary battery may be completely sealed using the pouch to improve a retention period and cell performance. Furthermore, the flexible-film primary battery may be manufactured using a screen printing technique, thereby facilitating a roll-to-roll sequential process.
Abstract:
Provided are a pouch-type flexible film battery and a method of manufacturing the same. The film battery includes a cathode structure including a cathode pouch, a cathode conductive carbon layer, and a cathode layer, an anode structure including an anode pouch, an anode conductive carbon layer, and an anode layer, and a polymer electrolyte layer between the cathode and anode structures. The polymer electrode layer may be a gel-type electrolyte including a cellulose-based polymer.
Abstract:
An antitumor agent which is not easily excreted from tumor cells and is suitable for a topical treatment. Specifically disclosed is a rotaxane compound with contains a compound represented by chemical formula 1 as the base structure. (In chemical formula 1, m≧2, n≧3, and X represents an anionic molecule or an anionic atom
Abstract:
Provided are a method for forming a cathode active material powder for a lithium secondary cell, and a cathode active material powder prepared using the method. According to the method, a coating layer consisting of a combination of a water-soluble polymer and a metal oxide may be formed on the particle surface of the cathode active material, thereby forming a uniform thickness of the coating layer. Thus, the elution of manganese may be prevented, thereby improving the capacity of the cathode active material and providing excellent cycle characteristics.
Abstract:
Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery. The composite polymer matrix structure can increase mechanical properties. The introduction of the lithium cationic single-ion conducting inorganic filler can provide excellent ionic conductivity and high rate discharge characteristics.