Abstract:
An article having anti-microbial effect is provided. The article includes an occlusive layer and a substrate having a nanostructured surface. The nanostructured surface is coated with a metal oxide layer and the metal oxide layer includes a metal oxide.
Abstract:
A sample collection device includes a planar sheet of material having opposing edges and a first major surface and an opposing second major surface, the planar sheet of material having at least two fold lines. A porous sample collection media has at least three edges and opposing major surfaces, at least one edge is fixed to the first major surface of the planar sheet of material. The planar sheet of material is configured to form an airflow channel by fixing the opposing edges together, the airflow channel extends from a mouthpiece end to an air outlet end. The porous sample collection media substantially occludes the airflow channel between the mouthpiece end and the air outlet end.
Abstract:
The present disclosure provides a sample collection device. The sample collection device includes a housing defining a fluid channel from a first portion to a second portion. The sample collection device further includes a porous sample collection media disposed within the housing and in fluid communication with the fluid channel. The sample collection device further includes a fluid inlet port disposed in fluid communication with the porous sample collection media. The fluid inlet port is configured to direct a test fluid onto the porous sample collection media. The sample collection device further includes an assay configured to receive a fluid that was incident on the porous sample collection media.
Abstract:
A transfer article includes an acrylate layer releasable from a release layer including a metal layer, a metal oxide layer, or a doped semiconductor layer at a release value of from 2 to 50 grams/inch (0.8 to 20 g/cm). A functional layer overlies the acrylate layer, wherein the functional layer includes at least one layer of a functional material selected to provide at least one of a therapeutic, aesthetic or cosmetic benefit on a dental appliance in a mouth of a patient, and wherein the transfer article has a thickness of less than 3 micrometers. A pattern of a transfer material is on a major surface of the functional layer, wherein the transfer material includes an adhesion modifying material chosen from release materials and adhesives.
Abstract:
An article having anti-microbial effect is provided. The article includes an occlusive layer; a substrate overlaying the occlusive layer, wherein the substrate having two opposing major surfaces; a metal oxide layer overlaying one opposing major surface of the substrate, wherein the metal oxide layer comprises a metal oxide; and a metal layer overlaying the other opposing major surface of the substrate; wherein the substrate is between the metal oxide layer and the metal layer; and wherein electric potential of the metal oxide layer is at least 0.454V more than electric potential of the metal layer.
Abstract:
A protected sample collection media for use in a sample collection device includes a piece of porous sample collection media having a first major side and an opposing second major side; and a protective sheath fully covering the first major side and the second major side. The protective sheath has a first portion and a second portion. The first portion is removable without removing the second portion. The second portion forms a tab constructed to be gripped by hand. The protected sample collection media may be part of a system including a sample collection device. The system may be provided as a kit including instructions for use of the kit.
Abstract:
The present disclosure relates to sample collection devices and sample collection and testing devices. The devices described herein includes a housing defining a fluid channel from a first portion to a second portion. The devices further include a porous sample collection media disposed within the housing and in fluid communication with the fluid channel. The devices further include a fluid inlet port disposed in fluid communication with the porous sample collection media. The fluid inlet port is configured to direct a test fluid onto the porous sample collection media. The sample collection device further includes an assay configured to receive a fluid that was incident on the porous sample collection media (and eluent) and test that eluent for the presence (or absence) of a pathogen or virus.
Abstract:
A dental appliance includes a polymeric shell with an arrangement of one or more cavities configured to receive one or more teeth, and the polymeric shell includes an antimicrobial lipid, such as monolaurin, and optionally an enhancer.
Abstract:
An article having anti-microbial effect is provided. The article includes an occlusive layer, an absorbent layer over-laying the occlusive layer, and a metal oxide layer overlaying the absorbent layer, wherein the metal oxide layer comprises a metal oxide and wherein the metal oxide layer comprises less than 40 wt. % non-oxidized metal.
Abstract:
A method of making a coatable composition includes: a) providing a initial composition comprising silica nanoparticles dispersed in an aqueous liquid medium, wherein the silica nanoparticles have a particle size distribution with an average particle size of less than or equal to 100 nanometers, and wherein the silica sol has a pH greater than 6; b) acidifying the initial composition to a pH of less than or equal to 4 using inorganic acid to provide an acidified composition; and c) dissolving at least one metal compound in the acidified composition to provide a coatable composition. The at least one metal compound includes at least one of a silver compound, a zinc compound, and a copper compound. Coatable compositions, antimicrobial compositions, preparable by the method are also disclosed. Antimicrobial articles including the antimicrobial compositions are also disclosed.