Abstract:
Electrostatic discharge protection for high speed transceiver interface is disclosed. In one aspect, an electrical overstress (EOS) protection device includes an anode terminal and a cathode terminal, a silicon controlled rectifier, a second NPN bipolar transistor including a base connected to the anode terminal and an emitter connected to an emitter of the first PNP bipolar transistor, and a second PNP bipolar transistor including an emitter connected to an emitter of the second NPN bipolar transistor and a base connected to a base of the first PNP bipolar transistor. Two or more paths for current conduction are present during a positive overstress transient that increases a voltage of the anode terminal relative to the cathode terminal, including a first path through the silicon controlled rectifier and a second path through the second NPN bipolar transistor and the second PNP bipolar transistor.
Abstract:
Distributed switches to suppress transient electrical overstress-induced latch-up are provided. In certain configurations, an integrated circuit (IC) or semiconductor chip includes a transient electrical overstress detection circuit that activates a transient overstress detection signal in response to detecting a transient electrical overstress event between a pair of power rails. The IC further includes mixed-signal circuits and latch-up suppression switches distributed across the IC, and the latch-up suppression switches temporarily clamp the power rails to one another in response to activation of the transient overstress detection signal to inhibit latch-up of the mixed-signal circuits.
Abstract:
Apparatus and methods for electrostatic discharge (ESD) protection of radio frequency circuits are provided. In certain configurations, an integrated circuit includes a first pin, a second pin, a forward ESD protection circuit, and a reverse ESD protection circuit. The forward ESD protection circuit includes one or more P+/N-EPI diodes, one or more ESD protection devices, and one or more P-EPI/N+ diodes electrically connected in series between the first pin and the second pin. A first P+/N-EPI diode of the one or more P+/N-EPI diodes includes an anode electrically connected to the first pin. The reverse ESD protection circuit comprising one or more P+/N-EPI diodes, one or more ESD protection devices, and one or more P-EPI/N+ diodes electrically connected in series between the second pin and the first pin. A first P-EPI/N+ diode of the one or more P-EPI/N+ diodes includes a cathode electrically connected to the first pin.
Abstract:
Apparatus and methods for electrostatic discharge (ESD) protection of radio frequency circuits are provided. In certain configurations, an integrated circuit includes a first pin, a second pin, a forward ESD protection circuit, and a reverse ESD protection circuit. The forward ESD protection circuit includes one or more P+/N-EPI diodes, one or more ESD protection devices, and one or more P-EPI/N+ diodes electrically connected in series between the first pin and the second pin. A first P+/N-EPI diode of the one or more P+/N-EPI diodes includes an anode electrically connected to the first pin. The reverse ESD protection circuit comprising one or more P+/N-EPI diodes, one or more ESD protection devices, and one or more P-EPI/N+ diodes electrically connected in series between the second pin and the first pin. A first P-EPI/N+ diode of the one or more P-EPI/N+ diodes includes a cathode electrically connected to the first pin.
Abstract translation:提供射频电路的静电放电(ESD)保护装置和方法。 在某些配置中,集成电路包括第一引脚,第二引脚,正向ESD保护电路和反向ESD保护电路。 正向ESD保护电路包括一个或多个P + / N-EPI二极管,一个或多个ESD保护器件以及串联在第一引脚和第二引脚之间电连接的一个或多个P-EPI / N +二极管。 一个或多个P + / N-EPI二极管的第一P + / N-EPI二极管包括电连接到第一引脚的阳极。 反向ESD保护电路包括一个或多个P + / N-EPI二极管,一个或多个ESD保护器件以及串联在第二引脚和第一引脚之间电连接的一个或多个P-EPI / N +二极管。 一个或多个P-EPI / N +二极管的第一P-EPI / N +二极管包括电连接到第一引脚的阴极。
Abstract:
A protection circuit including a multi-gate high electron mobility transistor (HEMT), a forward conduction control block, and a reverse conduction control block is provided between a first terminal and a second terminal. The multi-gate HEMT includes an explicit drain/source, a first depletion-mode (D-mode) gate, a first enhancement-mode (E-mode) gate, a second E-mode gate, a second D-mode gate, and an explicit source/drain. The drain/source and the first D-mode gate are connected to the first terminal and the source/drain and the second D-mode gate are connected to the second terminal. The forward conduction control block turns on the second E-mode gate when a voltage difference between the first and second terminals is greater than a forward conduction trigger voltage, and the reverse conduction control block turns on the first E-mode gate when the voltage difference is more negative than a reverse conduction trigger voltage.
Abstract:
Apparatus and methods for active detection, timing, and protection related to transient electrical events are disclosed. A detection circuit generates a detection signal in response to a transient electrical stress. First and second driver circuits of an integrated circuit, each driver having one or more bipolar junction transistors, activate based on the detection signal and generate activation signals. The one or more bipolar junction transistors of the first and second driver circuits are configured to conduct current substantially laterally across respective base regions. A discharge circuit, having an upper discharge element and a lower discharge element, receives the activation signals and activates to attenuate the transient electrical event.
Abstract:
Apparatuses and methods for providing transient electrical event protection are disclosed. In one embodiment, an apparatus comprises a detection and timing circuit, a current amplification circuit, and a clamping circuit. The detection and timing circuit is configured to detect a presence or absence of a transient electrical event at a first node, and to generate a first current for a first duration upon detection of the transient electrical event. The current amplification circuit is configured to receive the first current from the detection and timing circuit and to amplify the first current to generate a second current. The clamping circuit is electrically connected between the first node and a second node and receives the second current for activation. The clamping circuit is configured to activate a low impedance path between the first and second nodes in response to the second current, and to otherwise deactivate the low impedance path.
Abstract:
High voltage clamps with transient activation and activation release control are provided herein. In certain configurations, an integrated circuit (IC) includes a clamp electrically connected between a first node and a second node and having a control input. The IC further includes a first resistor-capacitor (RC) circuit that activates a detection signal in response to detecting a transient overstress event between the first node and the second node, an active feedback circuit that provides feedback from the first node to the control input of the clamp in response to activation of the detection signal, a second RC circuit that activates a shutdown signal after detecting passage of the transient overstress event based on low pass filtering a voltage difference between the first node and the second node, and a clamp shutdown circuit that turns off the clamp via the control input in response to activation of the shutdown signal.
Abstract:
Electrical overstress protection via silicon controlled rectifier (SCR) trigger amplification control is provided. In certain configurations, an overstress protection circuit includes a control circuit for detecting presence of an overstress event between a first pad and a second pad of an interface, and a discharge circuit electrically connected between the first pad and the second pad and selectively activated by the control circuit. The interface corresponds to an electronic interface of an integrated circuit (IC), a System on a Chip (SoC), or System in-a-Package (SiP). The discharge circuit includes a first smaller SCR and a second larger SCR. In response to detecting an overstress event, the control circuit activates the smaller SCR, which in turn activates the larger SCR to provide clamping between the first pad and the second pad.
Abstract:
Apparatus and methods for transient overstress protection with false condition shutdown are provided herein. In certain configurations, a high-voltage tolerant actively-controlled protection circuit includes a transient overstress detection circuit, a clamp circuit electrically connected between a first node and a second node, a bias circuit that biases the clamp circuit, and a false condition shutdown circuit. The transient overstress detection circuit generates a detection signal indicating whether or not a transient overstress event is detected between the first and second nodes. Additionally, the false condition shutdown circuit generates a false condition shutdown signal based on low pass filtering a voltage difference between the first and second nodes, thereby determining independently whether or not power is present. The bias circuit controls operation of the clamp circuit in an on state or an off state based on the detection signal and the false condition shutdown signal.