Abstract:
An active matrix liquid crystal display having an array of pixels is provided. The display includes a thin film transistor (TFT) for each pixel. The TFT has a gate electrode, a source electrode overlapping with a first area of the gate electrode, and a drain electrode overlapping with a second area with the gate electrode. The display also includes a color filter layer disposed over the TFT. The color filter layer has a first via hole to expose a portion of the drain electrode. The display further includes a metal layer disposed over the color filter layer and covering the gate electrode. The metal layer is configured to connect to the drain electrode through the first via hole. The display also includes an organic insulator layer disposed over the metal layer. The organic insulator layer has a second via hole to expose a first portion of the metal layer and a third via hole to expose a second portion of the metal layer.
Abstract:
A method is provided for fabricating thin-film transistors (TFTs) for an LCD having an array of pixels. The method includes depositing a first photoresist layer over a portion of a TFT stack. The TFT stack includes a conductive gate layer, and a semiconductor layer. The method also includes doping the exposed semiconductor layer with a first doping dose. The method further includes etching a portion of the conductive gate layer to expose a portion of the semiconductor layer, and doping the exposed portion of the semiconductor layer with a second doping dose. The method also includes removing the first photoresist layer, and depositing a second photoresist layer over a first portion of the doped semiconductor layer in an active area of the pixels to expose a second portion of the doped semiconductor layer in an area surrounding the active area. The method further includes doping the second portion of the doped semiconductor layer with a third doping dose, the first dose being higher than the second dose and the third dose.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may include a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The color filter layer may form the outermost layer of the display. A color filter layer substrate in the color filter layer may have opposing inner and outer surfaces. A layer of patterned metal on the inner surface may form metal alignment marks. The metal alignment marks may include alignment marks for color filter elements, alignment marks for a black matrix layer that is formed on top of the color filter elements, and post spacer alignment marks. The layer of patterned metal may also form structures such as logo structures that are visible on the outer surface in an inactive border region of the display.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have multiple subpixels of different colors. To avoid undesired color shifts when operating the display, the display may be configured so that subpixels of different colors are not coupled to each other through parasitic capacitances. The subpixels may include red, green, and blue subpixels or subpixels of other colors. Each subpixel may include an organic light-emitting diode having an anode and a cathode. The anode of each organic light-emitting diode may be coupled to a respective storage capacitor. Capacitive coupling between subpixels can be minimized by configuring the subpixel structures of each pixel so that the storage capacitors of the subpixels do not overlap the anodes of other subpixels in the pixel. Anode and capacitor overlap with subpixel data lines may also be reduced or eliminated.
Abstract:
A display may have an array of organic light-emitting diodes that form an active area on a flexible substrate. Metal traces may extend between the active area and an inactive area of the flexible substrate. Display driver circuitry such as a display driver integrated circuit may be attached to a flexible printed circuit that is attached to the flexible substrate in the inactive area. The metal traces may extend across a bend region in the flexible substrate. The flexible substrate may be bent in the bend region. The flexible substrate may be locally thinned in the bend region. A neutral stress plane adjustment layer may cover the metal traces in the bend region. The neutral stress plane adjustment layer may include polymer layers such as an encapsulation layer, a pixel definition layer, a planarization layer, and a layer that covers a pixel definition layer and planarization layer.
Abstract:
An electronic device may have a flexible display with portions that can be bent. The display may include an array of display pixels in an active area. Contact pads may be formed in an inactive area of the display. Display circuitry in the active area may exhibit a given stack height, whereas display circuitry in the inactive area may exhibit a stack height that is less than the given stack height. In particular, the contact pads may be formed directly on a multi-buffer layer that sits directly on a flexible display substrate. Passivation material may be selectively formed only at the edges of the contact pad on the multi-buffer layer. The multi-buffer layer may be formed at a distance from the edge of the flexible display substrate to minimize cracking in the multi-buffer layer.
Abstract:
A display may have an array of light-emitting diode pixels or pixels containing portions of a liquid crystal layer to which electric fields are applied using electrodes. A pixel with a light-emitting diode may have a drive transistor coupled in series with the light-emitting diode. A storage capacitor may be coupled to a gate of the drive transistor. A pixel with a liquid crystal portion may have a storage capacitor coupled to a given one of the electrodes in that pixel. Switching circuitry in each pixel may be used to load data from a data line into the storage capacitor of the pixel. The switching circuitry may include a semiconducting-oxide transistor coupled to an associated data line and a series-connected silicon transistor that is coupled to the storage capacitor.
Abstract:
A display may have an array of pixels. Each pixel may have a light-emitting diode that emits light under control of a drive transistor. The organic light-emitting diodes may have a common cathode layer, a common electron layer, individual red, green, and blue emissive layers, a common hole layer, and individual anodes. The hole layer may have a hole injection layer stacked with a hole transport layer. Pixel circuits for controlling the diodes may be formed from a layer of thin-film transistor circuitry on a substrate. A planarization layer may cover the thin-film transistor layer. Lateral leakage current between adjacent diodes can be blocked by shorting the common hole layer to a metal line such as a bias electrode that is separate from the anodes. The metal line may be laterally interposed between adjacent pixels and may be formed on the planarization layer or embedded within the planarization layer.