Abstract:
The present disclosure relates to methods for depositing an elemental metal or semimetal-containing material on a substrate by a cyclic deposition process, to an elemental metal or semimetal-containing layer, to a semiconductor structure and a device, and to deposition assemblies for depositing elemental metal or semimetal-containing material on a substrate. A method according to the current disclosure comprises providing a substrate in a reaction chamber, providing a metal or a semimetal precursor to the reaction chamber in a vapor phase, and providing a reducing agent into the reaction chamber in a vapor phase to form elemental metal or semimetal-containing material on the substrate. The reducing agent according to the method comprises a cyclohexadiene compound selected from compounds comprising a germanium-containing substituent.
Abstract:
Methods of forming a transition metal containing film on a substrate by a cyclical deposition process are disclosed. The methods may include: contacting the substrate with a first vapor phase reactant comprising a transition metal halide compound comprising a bidentate nitrogen containing adduct ligand; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. The deposition methods may also include forming a transition metal containing film with an electrical resistivity of less than 50 μΩ-cm at a film thickness of less than 50 nanometers.
Abstract:
A method of depositing a metal-containing material is disclosed. The method can include use of cyclic deposition techniques, such as cyclic chemical vapor deposition and atomic layer deposition. The metal-containing material can include intermetallic compounds. A structure including the metal-containing material and a system for forming the material are also disclosed.
Abstract:
Methods are provided for synthesizing W(IV) beta-diketonate precursors. Additionally, methods are provided for forming W containing thin films, such as WS2, WNx, WO3, and W via vapor deposition processes, such as atomic layer deposition (ALD) type processes and chemical vapor deposition (CVD) type processes. Methods are also provided for forming 2D materials containing W.
Abstract:
Methods are provided for synthesizing W(IV) beta-diketonate precursors. Additionally, methods are provided for forming W containing thin films, such as WS2, WNx, WO3, and W via vapor deposition processes, such as atomic layer deposition (ALD) type processes and chemical vapor deposition (CVD) type processes. Methods are also provided for forming 2D materials containing W.
Abstract:
Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
Abstract:
Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
Abstract:
Methods are provided for synthesizing W(IV) beta-diketonate precursors. Additionally, methods are provided for forming W containing thin films, such as WS2, WNx, WO3, and W via vapor deposition processes, such as atomic layer deposition (ALD) type processes and chemical vapor deposition (CVD) type processes. Methods are also provided for forming 2D materials containing W.
Abstract:
Atomic layer deposition (ALD) processes for forming Group VA element containing thin films, such as Sb, Sb—Te, Ge—Sb and Ge—Sb—Te thin films are provided, along with related compositions and structures. Sb precursors of the formula Sb(SiR1R2R3)3 are preferably used, wherein R1, R2, and R3 are alkyl groups. As, Bi and P precursors are also described. Methods are also provided for synthesizing these Sb precursors. Methods are also provided for using the Sb thin films in phase change memory devices.
Abstract:
A method of forming a transition metal containing films on a substrate by a cyclical deposition process is disclosed. The method may include: contacting the substrate with a first vapor phase reactant comprising a transition metal halide compound comprising a bidentate nitrogen containing adduct ligand; and contacting the substrate with a second vapor phase reactant. A method for supplying a transition metal halide compound comprising a bidentate nitrogen containing ligand to a reaction chamber is disclosed, along with related vapor deposition apparatus.