摘要:
An optical system has an aperture through which virtual and real-world images are viewable along a viewing axis. The optical system may be incorporated into a head-mounted display (HMD). By illuminating a viewing location with an infrared light source, an eye pupil may be illuminated. Infrared light is reflected from the viewing location and is collected with a proximal beam splitter. An image former is configured to reflect at least a portion of the visible light pattern generated by the display panel to form the virtual image and transmit at least a portion of the collected infrared light. The transmitted infrared light may be imaged by a camera. The HMD may use images from the camera to provide, for example, context-sensitive virtual images to a wearer.
摘要:
Methods and devices for determining whether a head-mountable computing device is donned or doffed are disclosed. In one embodiment, a method is disclosed that includes receiving from at least one capacitive sensor data indicating a rate of change of capacitance, making a comparison of the rate of change of capacitance to a threshold rate of change of capacitance and, based on the comparison, determining whether the head-mountable computing device is donned or doffed. The method further includes, if the head-mountable computing device is donned, causing the head-mountable computing device to operate in a first state, and if the head-mountable computing device is doffed, causing the head-mountable computing device to operate in a second state, where the head-mountable computing device consumes less power in the second state than in the first state.
摘要:
A wearable computing device includes a head-mounted display (HMD) that provides a field of view in which at least a portion of the environment of the wearable computing device is viewable. The HMD is operable to display images superimposed over the field of view. When the wearable computing device determines that a target device is within its environment, the wearable computing device obtains target device information related to the target device. The target device information may include information that defines a virtual control interface for controlling the target device and an identification of a defined area of the target device on which the virtual control image is to be provided. The wearable computing device controls the HMD to display the virtual control image as an image superimposed over the defined area of the target device in the field of view.
摘要:
Methods and systems involving resolution of directional ambiguity between a graphical display and a touch-based user-interface are disclosed herein. An example system may be configured to: (a) cause a visual depiction of a first reference marker on a graphical display; (b) receive first input data indicating an initial touch input on a touch-based user-interface, where the initial touch input corresponds to an input-direction path having a first end and a second end, and where the touch input corresponds to movement of the input-direction path; (c) associate movement of the first reference marker with subsequent touch inputs; (d) receive second input data indicating a subsequent touch input; and (e) cause a visual depiction of movement of a second reference marker.
摘要:
A wearable computing device is authenticated using bone conduction. When a user wears the device, a bone conduction speaker and a bone conduction microphone on the device contact the user's head at positions proximate the user's skull. A calibration process is performed by transmitting a signal from the speaker through the skull and receiving a calibration signal at the microphone. An authentication process is subsequently performed by transmitting another signal from the speaker through the skull and an authentication signal is received at the microphone. In the event that frequency response characteristics of the authentication signal match the frequency response characteristics of the calibration signal, the user is authenticated and the device is enabled for user interaction without requiring the user to input any additional data.
摘要:
An embodiment takes the form of a computer-implemented method comprising causing a field-sequential color display of a wearable computing device to initially operate in a first color space; and based at least in part on data from one or more sensors of the wearable computing device, detecting movement of the wearable computing device that is characteristic of color breakup perception. The method further comprises, in response to detecting the movement that is characteristic of color breakup perception, causing the field-sequential color display to operate in a second color space.
摘要:
An apparatus includes a light source, a display array, a light relay, a photodetector, control circuitry, and measurement circuitry. The light source is for providing lamp light during an ON-time of the light source. The display array is positioned to receive and selectively manipulate the lamp light. The light relay is positioned to receive the image light from the display array. The photodetector is optically coupled to receive light. Control circuitry is coupled to the light source for cycling the light source and coupled to the measurement circuitry for coordinating light measurements of the photodetector.
摘要:
A wearable computing device includes a head-mounted display (HMD) that provides a field of view in which at least a portion of the environment of the wearable computing device is viewable. The HMD is operable to display images superimposed over the field of view. When the wearable computing device determines that a target device is within its environment, the wearable computing device obtains target device information related to the target device. The target device information may include information that defines a virtual control interface for controlling the target device and an identification of a defined area of the target device on which the virtual control image is to be provided. The wearable computing device controls the HMD to display the virtual control image as an image superimposed over the defined area of the target device in the field of view.
摘要:
Methods and devices for determining whether a head-mountable computing device is donned or doffed are disclosed. In one embodiment, a method is disclosed that includes receiving from at least one capacitive sensor data indicating a rate of change of capacitance, making a comparison of the rate of change of capacitance to a threshold rate of change of capacitance and, based on the comparison, determining whether the head-mountable computing device is donned or doffed. The method further includes, if the head-mountable computing device is donned, causing the head-mountable computing device to operate in a first state, and if the head-mountable computing device is doffed, causing the head-mountable computing device to operate in a second state, where the head-mountable computing device consumes less power in the second state than in the first state.
摘要:
Exemplary methods and systems relate to detecting physical objects near a substantially transparent head-mounted display (HMD) system and activating a collision-avoidance action to alert a user of the detected objects. Detection techniques may include receiving data from distance and/or relative movement sensors and using this data as a basis for determining an appropriate collision-avoidance action. Exemplary collision-avoidance actions may include de-emphasizing virtual objects displayed on the HMD to provide a less cluttered view of the physical objects through the substantially transparent display and/or presenting new virtual objects.