Abstract:
A package carrier includes: (a) a dielectric layer defining a plurality of openings; (b) patterned electrically conductive layer, embedded in the dielectric layer and disposed adjacent to a first surface of the dielectric layer; (c) a plurality of electrically conductive posts, disposed in respective ones of the openings, wherein the openings extend between a second surface of the dielectric layer to the patterned electrically conductive layer, the electrically conductive posts are connected to the patterned electrically conductive layer, and an end of each of the electrically conductive posts has a curved profile and is faced away from the patterned electrically conductive layer; and (d) a patterned solder resist layer, disposed adjacent to the first surface of the dielectric layer and exposing portions of the patterned electrically conductive layer corresponding to contact pads. A semiconductor package includes the package carrier, a chip, and an encapsulant covering the chip and the package carrier.
Abstract:
A substrate for packaging a semiconductor device includes a first dielectric layer having a first surface and a second surface opposite to the first surface, a first patterned conductive layer adjacent to the first surface of the first dielectric layer, and a second patterned conductive layer adjacent to the second surface of the first dielectric layer and electrically connected to the first patterned conductive layer. The first patterned conductive layer includes a first portion and a second portion. Each of the first portion and the second portion is embedded in the first dielectric layer and protrudes relative to the first surface of the first dielectric layer toward a direction away from the second surface of the first dielectric layer. A thickness of the first portion of the first patterned conductive layer is greater than a thickness of the second portion of the first patterned conductive layer.
Abstract:
A semiconductor substrate and a manufacturing method thereof are provided. The semiconductor substrate includes a dielectric layer, a circuit layer, a first protection layer and a plurality of conductive posts. The dielectric layer has a first surface and a second surface that are opposite to each other. The circuit layer is embedded in the dielectric layer and is exposed from the first surface. The first protection layer covers a portion of the first circuit layer and defines a plurality of holes that expose a remaining portion of the first circuit layer. The conductive posts are formed in the holes.
Abstract:
An interposer substrate includes a first circuit pattern embedded at a first surface of a dielectric layer and a second circuit pattern embedded at a second surface of the dielectric layer; a middle patterned conductive layer in the dielectric layer between the first circuit pattern and the second circuit pattern; first conductive vias, where each first conductive via includes a first end adjacent to the first circuit pattern and a second end adjacent to the middle patterned conductive layer, wherein a width of the first end is greater than a width of the second end; second conductive vias, where each second conductive via including a third end adjacent to the second circuit pattern and a fourth end adjacent to the middle patterned conductive layer, wherein a width of the third end is greater than a width of the fourth end.
Abstract:
The present disclosure relates to a semiconductor package and method of making the same. The semiconductor package includes an encapsulation layer, a component within the encapsulation layer, a first dielectric layer, a second dielectric layer, a first patterned conductive layer, and a second patterned conductive layer. The component includes pads on a front surface of the component. The first dielectric layer is disposed on a surface of the encapsulation layer. The second dielectric layer is disposed on a surface of the first dielectric layer. The first and second dielectric layers define via holes extending from the second dielectric layer to respective ones of the pads. The first patterned conductive layer is disposed within the first dielectric layer and surrounds the via holes. The second patterned conductive layer is disposed within the second dielectric layer and surrounds the via holes.
Abstract:
A package carrier includes: (a) a dielectric layer defining a plurality of openings; (b) a patterned electrically conductive layer, embedded in the dielectric layer and disposed adjacent to a first surface of the dielectric layer; (c) a plurality of electrically conductive posts, disposed in respective ones of the openings, wherein the openings extend between a second surface of the dielectric layer to the patterned electrically conductive layer, the electrically conductive posts are connected to the patterned electrically conductive layer, and an end of each of the electrically conductive posts has a curved profile and is faced away from the patterned electrically conductive layer; and (d) a patterned solder resist layer, disposed adjacent to the first surface of the dielectric layer and exposing portions of the patterned electrically conductive layer corresponding to contact pads. A semiconductor package includes the package carrier, a chip, and an encapsulant covering the chip and the package carrier.
Abstract:
A multilayer substrate includes a first outer conductive patterned layer, a first insulating layer exposing a portion of the first outer conductive patterned layer to define a first set of pads, a second outer conductive patterned layer, and a second insulating layer exposing a portion of the second outer conductive patterned layer to define a second set of pads. The multilayer substrate further includes inner layers each with an inner conductive patterned layer, multiple inner conductive posts formed adjacent to the inner conductive patterned layer, and an inner dielectric layer, where the inner conductive patterned layer and the inner conductive posts are embedded in the inner dielectric layer, and a top surface of each of the inner conductive posts is exposed from the inner dielectric layer.
Abstract:
A multilayer substrate includes a first outer conductive patterned layer, a first insulating layer exposing a portion of the first outer conductive patterned layer to define a first set of pads, a second outer conductive patterned layer, and a second insulating layer exposing a portion of the second outer conductive patterned layer to define a second set of pads. The multilayer substrate further includes inner layers each with an inner conductive patterned layer, multiple inner conductive posts formed adjacent to the inner conductive patterned layer, and an inner dielectric layer, where the inner conductive patterned layer and the inner conductive posts are embedded in the inner dielectric layer, and a top surface of each of the inner conductive posts is exposed from the inner dielectric layer.