摘要:
A method is provided to produce liquid crystal displays (LCDs) on polycrystalline films having a single predominant crystal orientation. A layer of amorphous silicon is deposited over a substrate to a thickness suitable for producing a desired crystal orientation. Lateral-seeded excimer laser annealing (LS-ELA) is used to crystallize a region of the amorphous silicon to form a polycrystalline film with a preferred crystal orientation. In an embodiment of the method, the polycrystalline film is polished. A pixel region is formed over a portion of the substrate using either amorphous silicon or polycrystalline silicon. A circuit region is formed over the polycrystalline film.
摘要:
A method is provided to produce thin polycrystalline films having a single predominant crystal orientation. The method is well suited to the production of films for use in production of thin film transistors (TFTs). A layer of amorphous silicon is deposited over a substrate to a thickness suitable for producing a desired crystal orientation. Lateral-seeded excimer laser annealing (LS-ELA) is used to crystallize the amorphous silicon to form a film with a preferred crystal orientation. The crystallized film is then polished to a desired thickness for subsequent processing.
摘要:
A method has been provided for etching adjoining layers of indium tin oxide (ITO) and silicon in a single, continuous dry etching process. A conventional dry etching gas, such as HI, is used to etch ITO using RF or plasma energy. When the silicon layer underlying the ITO layer is reached, oxygen or nitrogen is added to etching gas to improve the selectivity of ITO to silicon. In some aspects of the invention an etch-stop layer is formed in the silicon layer. A specific example of fabricating a bottom gate thin film transistor (TFT) is also provided where adjoining layers of source metal, ITO, and channel silicon are etched in the same dry etch step.
摘要:
The invention provides an apparatus for reducing, or eliminating, ambient air in connection with an excimer laser annealing process. Nozzles are provided to direct a flow of gas, preferably helium, neon, argon or nitrogen, at a region overlying the target area of an amorphous silicon layer deposited on an LCD substrate. The nozzles direct a flow of gas at sufficient pressure and flow rate to remove ambient air from the region overlying the target area. With the ambient air, especially oxygen, removed, the laser can anneal the amorphous silicon to produce polycrystalline silicon with less oxygen contamination. In a preferred embodiment, an exhaust system is also provided to remove the gas.
摘要:
A method of physical vapor deposition includes selecting a target material; mixing at least two gases to form a sputtering gas mixture, wherein a first sputtering gas is helium and a second sputtering gas is taken from the gases consisting of neon, argon krypton, xenon and radon; forming a plasma in the sputtering gas mixture atmosphere to sputter atoms from the target material to the substrate thereby forming a layer of target material on the substrate and annealing the substrate and the deposited layer thereon. An improved physical vapor deposition vacuum chamber includes a target held in a target holder, a substrate held in a substrate holder, a plasma arc generator, and heating rods. A sputtering gas feed system is provided for introducing a mixture of sputtering gases into the chamber; as is a vacuum mechanism comprising at least one turbomolecular pump for evacuating the chamber to a pressure of less than 16 mTorr during deposition. The method and apparatus are particularly suited for forming thin film transistors and liquid crystal displays having thin film transistors therein.
摘要:
A high-density plasma method is provided for forming a SiOXNY thin-film. The method provides a substrate and introduces a silicon (Si) precursor. A thin-film is deposited overlying the substrate, using a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. As a result, a SiOXNY thin-film is formed, where (X+Y 0). The SiOXNY thin-film can be stoichiometric or non-stoichiometric. The SiOXNY thin-film can be graded, meaning the values of X and Y vary with the thickness of the SiOXNY thin-film. Further, the process enables the in-situ deposition of a SiOXNY thin-film multilayer structure, where the different layers may be stoichiometric, non-stoichiometric, graded, and combinations of the above-mentioned types of SiOXNY thin-films.
摘要翻译:提供了高密度等离子体法,用于形成SiO x N N Y Y薄膜。 该方法提供衬底并引入硅(Si)前体。 使用高密度(HD)等离子体增强化学气相沉积(PECVD)工艺将薄膜沉积在衬底上。 结果,形成SiO(X + Y <2和Y> 0)的SiO sub> N sub>薄膜。 SiO 2薄膜可以是化学计量的或非化学计量的。 SiO 2薄膜可以分级,这意味着X和Y的值随着SiO 2 X N的厚度而变化, SUB> Y sub>薄膜。 此外,该方法能够实现SiO 2薄膜多层结构的原位沉积,其中不同的层可以是化学计量的,非化学计量的,分级的, 以及上述类型的SiO x N N Y Y薄膜的组合。
摘要:
A mask with sub-resolution aperture features and a method for smoothing an annealed surface using a sub-resolution mask pattern are provided. The method comprises: supplying a laser beam having a first wavelength; supplying a mask with a first mask section having apertures with a first dimension and a second mask section with apertures having a second dimension, less than the first dimension; applying a laser beam having a first energy density to a substrate region; melting a substrate region in response to the first energy density; crystallizing the substrate region; applying a diffracted laser beam to the substrate region; and, in response to the diffracted laser beam, smoothing the substrate region surface. In some aspects of the method, applying a diffracted laser beam to the substrate area includes applying a diffracted laser beam having a second energy density, less than the first energy density, to the substrate region. The second energy density is in the range of 40% to 70% of the first energy density, and preferably in the range of 50% to 60% of the first energy density.
摘要:
A method is provided for forming a silicon nitride (SiNx) film. The method comprises: providing a Si substrate or Si film layer; optionally maintaining a substrate temperature of about 400 degrees C., or less; performing a high-density (HD) nitrogen plasma process where a top electrode is connected to an inductively coupled HD plasma source; and, forming a grown layer of SiNx overlying the substrate. More specifically, the HD nitrogen plasma process includes using an inductively coupled plasma (ICP) source to supply power to a top electrode, independent of the power and frequency of the power that is supplied to the bottom electrode, in an atmosphere with a nitrogen source gas. The SiNx layer can be grown at an initial growth rate of at least about 20 Å in about the first minute.
摘要:
A process of lateral crystallization is provided for increasing the lateral growth length (LGL). A localized region of the substrate is heated for a short period of time. While the localized region of the substrate is still heated, a silicon film overlying the substrate is irradiated to anneal the silicon film to crystallize a portion of the silicon film in thermal contact with the heated substrate region. A CO2 laser may be used as a heat source to heat the substrate, while a UV laser or a visible spectrum laser is used to irradiate and crystallize the film.
摘要:
A vertical thin-film transistor (V-TFT) inverter circuit and a method for forming a multi-planar layout TFT inverter circuit have been provided. The method comprising: forming a P-channel TFT with a gate, a first source/drain (S/D) region in a first horizontal plane, and a second S/D region in a second horizontal plane, different than the first horizontal plane; and, forming an N-channel TFT, adjacent the P-channel TFT, with a gate, a third S/D region in a third horizontal plane, and a fourth S/D region in the second horizontal plane, different than the third horizontal plane. Forming a P-channel TFT includes forming a P-channel top-drain vertical TFT (TDV-TFT), and forming an N-channel TFT includes forming an N-channel TDV-TFT.