Abstract:
An internal unit of a washing machine or spin-dryer normally includes a washing container, which has a laundry drum mounted in the container such that it can rotate, and an electric motor for driving the laundry drum via a reduction gear, a transmission, or direct drive. The internal unit is suspended in a machine housing such that it can vibrate and constitutes an overall system which can vibrate in a damped manner and which is subject to unbalance-dependent resonance phenomena in specific regions of the rotational speed of the laundry drum. The causes of these resonance phenomena are vibratory movements due to momentary unbalances in the load in the laundry drum. To reduce these unbalance-dependent resonance phenomena, the internal unit is provided with a vibration sensor which is rigidly or substantially rigidly coupled to the internal unit
Abstract:
An interchangeable container for a system for building a mold body by forming superimposed layers of granular material, the granular material locally and selectively hardened layer by layer. The container includes a bottom structure that is displaceable in the interior of the container in a direction in parallel with the container side walls and at least one spindle drive having a vertical screw spindle rotatably mounted in a container side of the container, and a spindle screw nut on which the bottom structure is supported. The bottom structure can be lowered step by step in the interior of the container by the spindle drive.
Abstract:
A method is specified for controlling a polyphase brushless electric motor, wherein the motor phase currents which are associated with the phases are produced by clocked variation of the respectively applied electrical potential. In this case, the motor phase currents flow back from the electric motor via a common return line with the peak current value in the return line being detected and being included in a controlled variable. Furthermore, a circuit configuration is specified, which is provided in a corresponding manner in order to carry out the control method. The control method and the circuit configuration allow the motor phase currents to be taken into account in the control of the electric motor in a simple and cost-effective manner.
Abstract:
The invention relates to a field device and a method for calibrating a field device, having a field device electronics and a sensor unit for process measurements, wherein the field device electronics receives measurement signals of the sensor unit, wherein the field device electronics includes an evaluation unit for evaluating the measurement signals and means for calibrating the field device. According to the invention, the means for calibrating the field device includes a digital adjusting element and a microprocessor, wherein the digital adjusting element is driven by the microprocessor for calibrating the field device.
Abstract:
In a method for controlling the heat in an internal combustion engine for a vehicle with a coolant circuit and actuable devices for influencing the heat balance of the internal combustion engine, wherein a coolant temperature and further operating parameters of the internal combustion engine are recorded, the actuable devices are operated as a function of the coolant temperature and the further operating parameters of the internal combustion engine in such a manner that an output value for determining a control variable is provided by means of a basic characteristic diagram as a function of the rotational speed and the load on the internal combustion engine, and this control value is corrected by means of a controller as a function of the coolant temperature and/or the further operating parameters.
Abstract:
In a method of transmitting a measurement signal M between a measuring unit 1 and a control unit 10, the uniform measurement signal has a supplementary signal Z superimposed on it which alternates over time. To check the operation of the measuring unit 1, the measurement signal M is evaluated in the control unit 10. If the supplementary signal Z is erroneous, the control unit 10 produces an alarm signal.
Abstract:
A medical imaging device includes an imaging modality for recording a medical image, a housing unit for housing the imaging modality, a system electronics unit for operating the imaging modality, and a receiving element for accommodating the system electronics unit. The receiving element includes a connecting element for connecting the receiving element to the imaging modality and/or the housing unit.
Abstract:
The invention relates to a process for generating a porous material having homogeneous, gas-containing inclusions in the micrometer and sub-micrometer range, and also to the material produced by such process.
Abstract:
A method for determining and/or monitoring a process variable of a medium, wherein a mechanically oscillatable unit is supplied with an exciter signal wherein a received signal coming from the mechanically oscillatable unit is received, and wherein the exciter signal is produced in such a manner, that a phase difference between the exciter signal and the received signal equals a predeterminable phase value. A criterion for judging the determining of the phase difference between the exciter signal and the received signal, or a signal dependent on the exciter signal or on the received signal, is established; in the case, in which the criterion for judging the determining of the phase difference is fulfilled, tuning of the phase difference is closed-loop controlled; and, in the alternative case, tuning of the phase difference is open-loop controlled. An apparatus associated with the method is also disclosed.
Abstract:
The invention relates to a method and a device for applying for a flowable material, especially a particulate material, in individual superimposed layers across a support (50), the flowable material being first filled from a stationary feed station (10) into a storage container (24) of an application device. In the application device (30), which travels back and forth across the support, the flowable material is distributed inside the storage container across the entire length of the device and is then metered through a slot into a metering shaft in such a manner that the filling level in the metering shaft remains constant during application of the flowable material from the metering shaft onto the support.