Abstract:
A system, a memory device and a method are contemplated in which the apparatus may include a plurality of memory cells, a plurality of voltage reduction circuits, and control circuitry. The plurality of voltage reduction circuits may be configured to reduce a voltage level of a power supply coupled to the plurality of memory cells. The control circuitry may be configured to select one of the voltage reduction circuits based on one or more operating parameters. The control circuitry may be further configured to activate the selected voltage reduction circuit upon receiving a write command directed towards the memory cells. The control circuitry may be further configured to execute the write command. Upon completion of the write command, the control circuitry may be further configured to de-activate the selected one of the voltage reduction circuits.
Abstract:
A device for comparing voltage levels of a pair of input signals is presented. The device may include a pre-amp circuit and a differential amplifier. The pre-amp circuit may be configured to receive a first input signal and a second input signal, adjust a voltage level of each of the pair of input signals, and assert a control signal after a pre-determined period of time from the assertion of an enable signal. The differential amplifier may be configured to amplify a voltage difference between the first input signal and the second input signal dependent upon the adjusted voltage level of the pair of input signals in response to the assertion of the control signal.
Abstract:
A method and apparatus for controlling a power switch are disclosed. A power switch may be coupled between a power supply signal and a virtual power supply signal coupled to a circuit block. The power switch may be configured to couple the power supply signal to the virtual power supply signal based on a first control signal, and reduce a voltage level of the virtual power supply signal to a voltage level less than a voltage level of the power supply signal based on a second control signal. The power switch may be further configured to change a current flowing from the power supply signal to the virtual power supply signal based on a third control signal.
Abstract:
An apparatus includes a master latch circuit including a first circuit and a second circuit, and a slave latch circuit including a third circuit and a fourth circuit. The first circuit and the second circuit may be coupled to a first shared circuit node, and the third circuit and the fourth circuit may be coupled to a second shared circuit node. The master latch circuit may be configured to store a value of an input signal in response to an assertion of a clock signal. The slave latch circuit may be configured to store an output value of the master latch circuit in response to a de-assertion of the clock signal. The master latch circuit may also be configured to de-couple the first shared circuit node from a ground reference node in response to the de-assertion of the clock signal.
Abstract:
Embodiments of a method that may allow for selectively tuning a delay of individual logic paths within a custom circuit or memory are disclosed. Circuitry may be configured to monitor a voltage level of a power supply coupled to the custom circuit or memory. A delay amount of a delay unit within the custom circuit or memory may be changed in response to a determination that the voltage level of the power supply has changed.
Abstract:
A apparatus including a clock source and a comparison circuit is presented. The clock source may be configured to generate a clock signal. The comparison circuit may be configured select a first frequency of the clock signal and to receive a plurality of voltage signal inputs for comparison. The comparison circuit may be further configured to compare a voltage level of a first voltage signal input of the plurality of voltage signal inputs to a voltage level of a second voltage signal input of the plurality of voltage signal inputs responsive to an active edge of the clock signal. The comparison circuit may also be configured to determine a comparison value corresponding to the comparison of the voltage levels and to select a second frequency of the clock signal dependent upon the comparison value, in which the second frequency is different than the first frequency.
Abstract:
A device for comparing voltage levels of a pair of input signals is presented. The device may include a pre-amp circuit and a differential amplifier. The pre-amp circuit may be configured to receive a first input signal and a second input signal, adjust a voltage level of each of the pair of input signals, and assert a control signal after a pre-determined period of time from the assertion of an enable signal. The differential amplifier may be configured to amplify a voltage difference between the first input signal and the second input signal dependent upon the adjusted voltage level of the pair of input signals in response to the assertion of the control signal.
Abstract:
Embodiments that may allow for selectively tuning a delay of individual write paths within a memory are disclosed. The memory may comprise a memory array, a first data latch, a second data latch, and circuitry. The first and second data latches may be configured to each sample a respective data value, responsive to detecting a first edge of a first clock signal. The circuitry may be configured to detect the first edge of the first clock signal, and select an output of the first data latch responsive to detecting the first edge of the first clock signal. The circuitry may detect a subsequent opposite edge of the first clock signal, and select an output of the second data latch responsive to sampling the opposite edge of the first clock signal.
Abstract:
Embodiments of a method that may allow for selectively tuning a delay of individual logic paths within a custom circuit or memory are disclosed. Circuitry may be configured to monitor a voltage level of a power supply coupled to the custom circuit or memory. A delay amount of a delay unit within the custom circuit or memory may be changed in response to a determination that the voltage level of the power supply has changed.
Abstract:
Embodiments of an apparatus are disclosed that may allow for the translation of signals from one power domain to another with well-balanced rise and fall times over a wide operational range. The apparatus may include an input buffer, a voltage shift circuit, and output circuit, and an output driver. The input buffer may be configured to generate a buffered version and delayed inverted version of an external signal at a first voltage level. The voltage shift circuit may be configured to generate two internal signals at a second voltage level dependent upon the output signals of the input buffer. The output circuit may be configured to generate two output driver signals at the second voltage level dependent upon the output signals of the voltage shift circuit. The output driver circuit may be configured to generate an output signal at the second voltage level dependent on the two output driver signals.