Abstract:
Membrane comprising a block copolymer comprising polyarylene ether blocks and polyalkylene oxide blocks, wherein said polyalkylene oxide blocks comprise at least one polyethylene oxide segment and at least one segment of at least one polyalkylene oxide that is different from polyethylene oxide.
Abstract:
The present invention relates to a process for the production of low-halogen-content polybiphenyl sulfone polymers, to the resultant polybiphenyl sulfone polymers, to polybiphenyl sulfone polymers having less than 400 ppm content of polymer-bonded halogen, to thermoplastic molding compositions comprising these polybiphenyl sulfone polymers, and to their use for the production of moldings, of fibers, of films, of membranes, or of foams.
Abstract:
A polyarylene ether sulfone comprising in polymerized form A) isosorbide, isomannide, isoidide or a mixture thereof and B) at least one nonsulfonated dihalodiaryl! sulfone (compound B) and C) at least one sulfonated dihalodiaryl sulfone (compound C), a process for its preparation and its use in the preparation of coatings, films, fibers, foams, membranes or molded articles.
Abstract:
A polyarylene ether copolymer comprising i) at least one block comprising in polymerized form A) isosorbide, isomannide, isoidide or a mixture thereof and B) at least one unit comprising at least one difunctional compound comprising at least one dichlorodiaryl sulfone, a dichlorodiaryl ketone or a mixture thereof and ii) at least one block comprising in polymerized form C) at least one polyalkylene oxide, a process for its preparation and its use in the preparation of coatings, films, fibers, foams, membranes or molded articles.
Abstract:
Block copolymer comprising polyarylene ether blocks and polyalkylene oxide blocks, wherein said block copolymer comprises at least two polyalkylene oxide blocks that are endcapped with different endcapping groups.
Abstract:
The present invention relates to a process for the production of a polyaryl ether sulfone polymer (P), comprising the following steps: (I) provision of a solution (PL) which comprises the polyaryl ether sulfone polymer (P) and comprises an aprotic polar solvent (L), (II) separation of the solution (PL) into droplets, (III) transfer of the droplets into a precipitation bath (F) which comprises water, with the result that the polyaryl ether sulfone polymer (P) is obtained in the form of particles, and (IV) isolation of the polyaryl ether sulfone polymer (P) where the temperature of the solution (PL) in step (II) is in the range from 50 to
Abstract:
The present invention is directed to ultrafiltration membranes comprising a membrane substrate layer (S) based on a sulfonated polyaryleneethersulfone polymer and to a method for their preparation. Furthermore, the present invention is directed to ultrafiltration processes making use of said membrane.
Abstract:
The present invention relates to a process for the production of low-chlorine-content polybiphenyl sulfone polymers, to the polybiphenyl sulfone polymers obtainable in this way, to polybiphenyl sulfone polymers with less than 800 ppm content of organically bonded chlorine, to thermoplastic molding compositions and moldings, fibers, films, membranes, or foams comprising the polybiphenyl sulfone polymers mentioned, and also to their use for the production of moldings, of fibers, of films, of membranes, or of foams.
Abstract:
The invention relates to the use of a thermoplastic molding composition which comprises at least one polybiphenyl ether sulfone polymer, to produce moldings for conveying gas.
Abstract:
A composition has at least one polyarylene (ether) sulfone, semi-aromatic polyamide, aluminum phosphate, and acid scavenger. The composition may further include at least one compatibilizer, fibrous or particulate filler, impact modifier, or auxiliary. The compositions can form a fiber, film, foam, or shaped article. The composition also has 20 to 80% by weight of the polyarylene (ether) sulfone. The polyarylene (ether) sulfone has at most 0.05% by weight of phenolic end groups.