Abstract:
A sensitizer in a dye-sensitized solar cell, including a compound of formula (I′) where: R1 and R2 are hydrogen, a halogen, an alkyl group, a cycloalkyl group, an aryl group, a hetaryl group, an alkoxy group, an aryloxy group, an arylthio group, a hetaryloxy group, a hetarylthio group, a diarylamino group, or a dialkylamino group; m, n are each independently an integer from 0-4; X is sulfur, oxygen, or NR3, where R3 is hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or a hetaryl group; Y1 is oxygen or N—Z-A, where A is —COOM, —SO3M, or —PO3M, where M is hydrogen, an alkali metal cation, or [NR′]4+, where each R′ is independently hydrogen or an alkyl group, and where Z is C1-C6-alkylene or 1,4-phenylene, where the phenylene radical is optionally substituted by one or more alkyl, nitro, cyano, and halogen substituents.
Abstract:
Thin layers or films of metal oxides are used as a semiconductor material of solar cells and they are coated with a sensitizer to achieve the high absorption of sunlight. Various dyes have been used as sensitizers in solar cells. Rylene monoimide derivatives are developed as photosensitizers for dye-sensitized solar cells and as photodetectors. The Rylene monoimide derivatives have very good quantum efficiencies, particularly in the NIR region of the absorption spectrum.
Abstract:
Boron-comprising perylene monoimides and a process for producing the boron-comprising perylene monoimides are provided. The boron-comprising perylene monoimides are useful as building blocks for producing perylene monoimide derivatives and monoimide derivatives. The boron-comprising perylene monoimides are also useful for preparing dye-sensitized solar cells.
Abstract:
Boron-comprising perylene monoimides and a process for producing the boron-comprising perylene monoimides are provided. The boron-comprising perylene monoimides are useful as building blocks for producing perylene monoimide derivatives and monoimide derivatives. The boron-comprising perylene monoimides are also useful for preparing dye-sensitized solar cells.
Abstract:
The present invention relates to a segmented graphene nanoribbon, comprising at least two different graphene segments covalently linked to each other, each graphene segment having a monodisperse segment width, wherein the segment width of at least one of said graphene segments is 4 nm or less and to a method for preparing it by polymerizing at least one polycyclic aromatic monomer compound and/or at least one oligo phenylene aromatic hydrocarbon monomer compound to form at least one polymer and by at least partially cyclodehydrogenating the one or more polymer.
Abstract:
The present invention provides the compounds of formulae (3) and (1) wherein n is 0 or 1, R13 and R14 are the same or different and are selected from the group consisting of NHR310, NR311R312, OR313, SR314 and R315, or R13 and R14 together are selected from the group consisting of (a), (b) and (c), and X is CI, Br of I, and a process for the preparation of compounds of formula (3) comprising the compounds of formula (1) as key intermediates.
Abstract:
The present invention related to thermally stable p-conducting oligomers and polymers of triangulene of formula (I) and their use in dye sensitized solar cells.
Abstract:
Boron-comprising perylene monoimides and a process for producing the boron-comprising perylene monoimides are provided. The boron-comprising perylene monoimides are useful as building blocks for producing perylene monoimide derivatives and monoimide derivatives. The boron-comprising perylene monoimides are also useful for preparing dye-sensitized solar cells.
Abstract:
Oligophenylene monomers for the synthesis of polymeric precursors for the preparation of graphene nanoribbons, the polymeric precursors, and methods for preparing them, as well as methods for preparing the graphene nanoribbons from the polymeric precursors and the monomers are provided.
Abstract:
Boron-comprising perylene monoimides and a process for producing the boron-comprising perylene monoimides are provided. The boron-comprising perylene monoimides are useful as building blocks for producing perylene monoimide derivatives and monoimide derivatives. The boron-comprising perylene monoimides are also useful for preparing dye-sensitized solar cells.