Abstract:
Filling device (22) for an ANG-sorption store (10) containing at least one adsorption medium (20), said filling device (22) being of tubular shape, having a mantle (36) defining a hollow interior, orifices (48) in said mantle (36), said ANG-sorption store (10) substantially mounted horizontally, wherein said orifices (48) are arranged on an upper part (62) of said mantle (36) of the filling device (22) extending in axial direction (34) through said ANG-sorption store (10).
Abstract:
The present invention relates to a process for the production of 2,2,4,6,6-pentamethyl-1,2,5,6-tetrahydro-pyrimidine comprising (i) providing a reactor containing a catalyst comprising a zeolitic material, wherein the zeolitic material comprises YO2 and optionally comprises X2O3 in its framework structure, wherein Y is a tetravalent element and X is a trivalent element; (ii) preparing a reaction mixture comprising acetone and ammonia; (iii) contacting the catalyst in the reactor with the reaction mixture prepared in (ii) for obtaining a reaction product comprising 2,2,4,6,6-pentamethyl-1,2,5,6-tetrahydro-pyrimidine; wherein the temperature programmed desorption of ammonia (NH3-TPD) profile of the zeolitic material comprised in the catalyst provided in (i) optionally displays one or more bands associated with medium acid sites, said one or more bands having maxima in the temperature range of from 250 to 500° C., wherein the integration of said one or more bands affords a total value of 0.5 mmol/g or less, and wherein the mixture prepared in (ii) and contacted with the catalyst in (iii) contains less than 10 wt.-% of water based on 100 wt.-% of the reaction mixture.
Abstract:
The invention relates to a process for the preparation of metal-organic frameworks (MOFs) in form of a homogenous powder, and a process wherein the metal-organic framework is molded into shaped bodies.
Abstract:
The invention relates to a ventilation system (10) with heat recovery adsorber, the ventilation system (10) for being installed in buildings, wherein the ventilation system (10) furthermore comprises at least one exterior intake/outlet opening (11) for an air stream from outside of the building and at least one interior intake/outlet opening (23) for an air stream from inside the building, at least one air fan unit (14) and at least one filter unit (12, 22), wherein the heat recovery adsorber includes a heat exchange material (16) for absorbing and releasing heat from the air streams and a sorption material (18) for at least adsorbing and desorbing at least one sorbate from the air streams, wherein the at least one sorbate is water vapor, said sorption material (18) comprising at least one adsorbent for water vapor exhibiting an s-shaped water adsorption isotherm (30) at room temperature (25° C.+/−10° C.) with a steep increase in a narrow relative humidity range, wherein a main loading lift of the adsorbent for water vapor occurs in the relative humidity range from 0.1 to 0.5 and the saturation capacity of the adsorbent for water vapor lies in the range from 0.25 to 1.2 kgwater/kgadsorbent. The invention further relates to methods and uses for combined heat recovery, cooling/heating and dehumidifying/humidifying of air streams for buildings as well as such buildings.
Abstract:
The present invention relates to a process for the preparation of a zeolitic material comprising YO2 in its framework structure, wherein Y stands for a tetravalent element, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more fluoride containing compounds, and one or more structure directing agents; (2) crystallizing the mixture obtained in step (1) for obtaining a zeolitic material comprising YO2 in its framework structure; wherein the mixture provided in step (1) and crystallized in step (2) contains 35 wt.-% or less of H2O based on 100 wt.-% of YO2 contained in the mixture provided in step (1) and crystallized in step (2), as well as to a zeolitic material comprising YO2 in its framework structure obtainable and/or obtained according to said process, and to a zeolitic material per se comprising SiO2 in its framework structure, wherein in the 29Si MAS NMR spectrum of the as-synthesized zeolitic material the ratio of the total integration value of the peaks associated to Q3 signals to the total integration value of the peaks associated to Q4 signals is in the range of from 0:100 to 20:80, including the use of the aforementioned zeolitic materials.
Abstract:
A process for filling a sorption store (50) with a gas (51), wherein at least one gas adsorbent medium (60) is disposed within at least one vessel, comprising a last step (26) wherein a last portion of an entire amount of the gas (51) to be filled into the sorption store (50) is fed at a maximum feed rate, said feed rate defined as an amount of gas (51) filled into the sorption store (50) per time unit, and wherein the last portion of the entire amount of the gas (51) to be filled into the sorption store (51) is the difference between at least 20% and 100%, in particular the difference between at least 40% and 100%, by weight of gas relating to the total weight of gas to be stored.
Abstract:
The present invention relates to a process for the conversion of ethane-1,2-diol to ethane-1,2-diamine and/or linear polyethylenimines of the formula H2N—[CH2CH2NH]n—CH2CH2NH2 wherein n≥1 comprising (i) providing a catalyst comprising a zeolitic material comprising YO2 and X2O3, wherein Y is a tetravalent element and X is a trivalent element, wherein the zeolitic material is selected from the group consisting of zeolitic materials having the MOR, FAU, CHA and/or GME framework structure, including combinations of two or more thereof; (ii) providing a gas stream comprising ethane-1,2-diol and ammonia; (iii) contacting the catalyst provided in (i) with the gas stream provided in (ii) for converting ethane-1,2-diol to ethane-1,2-diamine and/or linear polyethylenimines.
Abstract:
A process for preparing a tin-containing zeolitic material having framework type BEA, comprising providing an aqueous synthesis mixture comprising a boron source, a silicon source, and a BEA structure directing agent; subjecting the synthesis mixture provided in to hydrothermal pre-crystallization conditions; adding the tin source to the obtained mixture; subjecting the obtained aqueous synthesis mixture to hydrothermal crystallization conditions, obtaining a tin-containing zeolitic material having framework type BEA comprised in its mother liquor.
Abstract:
The invention is related to a storage vessel (1) comprising a shaped body (3) of a porous solid, wherein the storage vessel (1) comprises a wall (5) with a section (7) comprising at least one inlet (9), wherein the storage vessel (1) has a central axis (11) and the central axis (11) is a longitudinal axis of the storage vessel (1) and/or perpendicular to a cross-sectional area of the at least one inlet (9), wherein the shaped body (3) covers at least 85% of an inner volume (13) of the storage vessel (1) and the shaped body (3) comprises an opening (19) in an axial direction (17), axial referring to the central axis (11) of the storage vessel (1), wherein the opening (19) extends from a first end (21) of the shaped body (3) to an opposing second end (23) of the shaped body (3) and wherein the storage vessel (1) comprises exactly one shaped body (3), which is formed in one piece. The invention is further related to a shaped body and use of the shaped body.
Abstract:
The present invention relates to a process for the preparation of a zeolitic material comprising the steps of: (1) providing a mixture comprising one or more sources for YO2 and one or more alkenyltrialkylammonium cation R1R2R3R4N+-containing compounds as structure directing agent; and (2) crystallizing the mixture obtained in step (1) to obtain a zeolitic material; wherein Y is a tetravalent element, and wherein R1, R2, and R3 independently from one another stand for alkyl; and R4 stands for alkenyl, as well as to zeolitic materials which may be obtained according to the inventive process and to their use.
Abstract translation:本发明涉及一种制备沸石材料的方法,包括以下步骤:(1)提供包含一种或多种YO 2源和一种或多种烯基三烷基铵阳离子R 1 R 2 R 3 R 4 N +化合物作为结构导向剂的混合物; 和(2)使步骤(1)中获得的混合物结晶以获得沸石材料; 其中Y是四价元素,并且其中R 1,R 2和R 3彼此独立地代表烷基; 并且R4代表烯基,以及可以根据本发明方法获得的沸石材料及其用途。