摘要:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises(a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I) R1R2R3N (I) wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
摘要:
The present invention relates to a process for the preparation of a zeolitic material comprising YO2 in its framework structure, wherein Y stands for a tetravalent element, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more fluoride containing compounds, and one or more structure directing agents; (2) crystallizing the mixture obtained in step (1) for obtaining a zeolitic material comprising YO2 in its framework structure; wherein the mixture provided in step (1) and crystallized in step (2) contains 35 wt.-% or less of H2O based on 100 wt.-% of YO2 contained in the mixture provided in step (1) and crystallized in step (2), as well as to a zeolitic material comprising YO2 in its framework structure obtainable and/or obtained according to said process, and to a zeolitic material per se comprising SiO2 in its framework structure, wherein in the 29Si MAS NMR spectrum of the as-synthesized zeolitic material the ratio of the total integration value of the peaks associated to Q3 signals to the total integration value of the peaks associated to Q4 signals is in the range of from 0:100 to 20:80, including the use of the aforementioned zeolitic materials.
摘要:
The present invention relates to a catalyst comprising particles of a ternary intermetallic compound of the following formula (I): X2YZ wherein X, Y, and Z are different from one another; X being selected from the group consisting of Mn, Fe, Co, Ni, Cu, and Pd; Y being selected from the group consisting of V, Mn, Cu, Ti, and Fe; and Z being selected from the group consisting of Al, Si, Ga, Ge, In, Sn, and Sb; wherein the particles of the ternary intermetallic compound are supported on a support material, as well as to a method for its production and to its use as a catalyst, and more specifically as a catalyst in a process for the condensation of a carbonyl compound with a methylene group containing compound or for the selective catalytic reduction of nitrogen oxides in exhaust gas.
摘要:
The present invention relates to a process for the production of a zeolitic material having a BEA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising one or more sources for YO2 and one or more sources for X2O3; (2) crystallizing the mixture obtained in step (1); (3) subjecting the zeolitic material having a BEA-type framework structure obtained in step (2) to an ion-exchange procedure with Cu; and (4) subjecting the Cu ion-exchanged zeolitic material obtained in step (3) to an ion-exchange procedure with Fe; wherein Y is a tetravalent element, and X is a trivalent element, wherein the mixture provided in step (1) and crystallized in step (2) further comprises seed crystals comprising one or more zeolitic materials having a BEA-type framework structure, and wherein the mixture provided in step (1) and crystallized in step (2) does not contain an organotemplate as a structure-directing agent, as well as to the zeolitic material having a BEA frame work structure per se, and to its use, in particular in a method for the treatment of NOx by selective catalytic reduction (SCR).
摘要:
The present invention relates to a process for the recovery of an at least bidentate organic compound comprised in a porous metal-organic framework material, the material comprising the at least bidentate organic compound coordinated to at least one metal ion, the process comprising the steps of (a) treating the metal-organic framework material with an acidic or alkaline liquid; (b) optionally separating off solid residue; and (c) isolating the at least bidentate organic compound.
摘要:
A process for the post-treatment of a zeolitic material having an MWW framework structure, the process comprising (i) providing a zeolitic material having an MWW framework structure, wherein the framework structure of the zeolitic material comprises X2O3 and YO2, wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X2O3:YO2 is greater than 0.02:1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X2O3:YO2 of at most 0.02:1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75° C.
摘要翻译:一种用于后处理具有MWW骨架结构的沸石材料的方法,该方法包括(i)提供具有MWW骨架结构的沸石材料,其中沸石材料的骨架结构包含X 2 O 3和YO 2,其中Y是 四价元素,X是三价元素,其中X 2 O 3 :YO 2的摩尔比大于0.02:1; (ii)用液体溶剂系统处理(i)中提供的沸石材料,从而获得摩尔比X2O3:YO2至多0.02:1的沸石材料,并至少部分地将沸石材料与液体溶剂系统分离; (iii)用pH值在5.5至8范围内和至少75℃的温度的液体水系统处理由(ii)得到的沸石材料。
摘要:
The present disclosure relates to a process preparing a zeolitic material having an AEI-type framework structure, wherein the framework structure comprises SiO2 and X2O3 and X is a trivalent element, and wherein the process comprises: (1) preparing a mixture comprising one or more cationic structure directing agents comprising a heterocyclic amine ring, seed crystals, and a first zeolitic material comprising SiO2 and X2O3 in its framework structure and having an FAU-type framework structure; and (2) heating the mixture to obtain a second zeolitic material comprising SiO2 and X2O3 in its framework structure and having an AEI-type framework structure.
摘要:
A process for preparing a zeolitic material having a zeolitic framework structure which exhibits a molar ratio (aAl2O3):SiO2 or a crystalline precursor thereof, comprising (i) preparing a mixture comprising H2O, one or more compounds comprising Si from which SiO2 in the zeolitic framework structure is formed, said one or more compounds comprising a silica gel exhibiting a molar ratio (c H2O):SiO2 and optionally one or more compounds comprising Al from which Al2O3 in the zeolitic framework structure is formed; (ii) subjecting the mixture obtained in (i) to crystallization at a crystallization temperature in the range of from 110 to 350° C., preferably in the range of from 190 to 350° C., and for a crystallization time in the range of from 0.1 to 48 h.
摘要:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises (a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I): R1R2R3N, wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
摘要:
The present invention relates to a process for the treatment of a gas stream containing nitrogen oxides comprising the steps of: (1) providing a gas stream containing one or more nitrogen oxides; (2) contacting the gas stream provided in step (1) with a transition metal containing zeolitic material having a BEA-type framework structure for reacting one or more of the nitrogen oxides; wherein the zeolitic material is obtainable from an organotemplate-free synthetic process, as well as to an apparatus for the treatment of a gas stream comprising containing nitrogen oxides.