Abstract:
A flexible substrate has at least one bendable region. The flexible substrate includes a flexible base, a first electrode layer disposed on the base, a first insulating layer disposed on a side of the first electrode layer away from the base, and a second electrode layer disposed on a side of the first insulating layer away from the base. The first electrode layer includes at least one first detection electrode, and the second electrode layer includes at least one second detection electrode. An orthogonal projection of a first detection electrode on the base overlaps at least partially with an orthogonal projection of a second detection electrode on the base. A region where orthogonal projections of the first detection electrode and the second detection electrode on the base are located overlaps with a bendable region.
Abstract:
Provided is a method for preparing a display substrate. The display substrate includes multiple pixel island regions, empty regions and connection bridge regions. The preparation method includes: forming first grooves corresponding to the pixel island regions and second grooves corresponding to the connection bridge regions on a side of a hard underlay substrate; preparing the display substrate on a side of the underlay substrate where the first grooves and the second grooves are formed, wherein the pixel island regions are located in regions where the first grooves are located, the connection bridge regions are located in regions where the second grooves are located, and the empty regions are located in regions other than the first grooves and the second grooves; and separating the underlay substrate from the display substrate to obtain the display substrate.
Abstract:
A substrate heating device and substrate heating method is disclosed. The device comprises: a heating layer for transferring heat; a transfer pipe for transferring a gas to a diffusion layer; the diffusion layer for enabling the gas to be uniformly distributed between a conducting layer and the heating layer; and the conducting layer for conducting the gas in the diffusion layer to below a substrate to be heated. The device can uniformly and fully heat the substrate to be heated, thus enabling the to-be-heated substrate to have a more uniform surface temperature, and achieving a better effect in an etching, deposition and/or sputtering process of the substrate to be heated.
Abstract:
Embodiments of the present disclosure provide a thin-film transistor (TFT), an array substrate and a manufacturing method thereof, and a display device. The method for preparing a TFT according to an embodiment of the present disclosure may comprise: providing a base substrate; and forming an active layer and an insulation layer on the base substrate. The active layer and the insulation layer may be arranged sequentially and in contact with each other, and the insulation layer may include at least one first insulation layer one of which is in contact with the active layer. The step of forming the first insulation layer may comprise: forming a first insulation film; and conducting a repairing process on the first insulation film by using a repairing source which provides filling atoms, so as to form bonds between at least part of dangling bonds in the first insulation film and the filling atoms.
Abstract:
Provided are a display panel, a preparation method thereof, and a display apparatus, which includes a display region, the display region includes at least one functional unit disposed on a substrate, one of the functional units includes a pixel unit and at least one non-display unit, wherein the pixel unit includes at least one sub-pixel, and the orthographic projection of the pixel unit on the substrate does not overlap the orthographic projection of the at least one non-display unit on the substrate.
Abstract:
An array substrate and manufacturing method and performance improvement method therefor, a display panel, and a display device. The array substrate includes: a substrate base; a shielding layer provided on one surface of the substrate base; a thin film transistor provided on the substrate base and covering the shielding layer; and a compensation layer provided on the side of the thin film transistor away from the substrate base.
Abstract:
Provided are a display substrate, a display device, and a method for manufacturing the display substrate. The display substrate includes: a first inorganic encapsulation layer covering pixels of an island region and covering a signal line of a bridge region, a first organic encapsulation layer covering the first inorganic encapsulation layer, and multiple insulating layers located in the bridge region and between the first inorganic encapsulation layer and a substrate.
Abstract:
A display panel, a display apparatus, and a manufacturing method are disclosed. The display panel includes a base substrate having a first through hole; a conductive structure located on the base substrate and at least partially covering the first through hole; and a display structure including a first display structure, a control line, and a second display structure that are arranged in layers on a side of the base substrate where the conductive structure is located, wherein the first display structure has a second through hole, and the control line is electrically connected to the conductive structure by passing through the second through hole.
Abstract:
A display panel is disclosed. The display panel includes a flexible substrate; a display sub-region on the flexible substrate including a light emitting device; a peripheral region of the display sub-region spacing the display sub-region from an adjacent display sub-region; and a current compensator in the peripheral region for compensating a current flowing through the light emitting device of the display sub-region in response to deformation of the flexible substrate.
Abstract:
The present disclosure discloses an array substrate with a display area, a manufacturing method thereof, a display panel, and a display device. The array substrate with the display area includes a base substrate, and a thin film transistor structure on a surface of the base substrate. The thin film transistor structure is in the display area, the thin film transistor structure includes at least a source-drain pattern and a planarization pattern. The source-drain pattern and the planarization pattern are on a side of the thin film transistor structure away from the base substrate. A surface of the planarization pattern away from the base substrate and a surface of the source-drain pattern away from the base substrate are substantially in a same plane, the planarization pattern has a first slot, and the source-drain pattern is accommodated in the first slot.