Abstract:
A circuit includes a first wireless interface circuit that transceives packetized data between a host module and a first external device in accordance with a first wireless communication protocol, wherein the first wireless protocol carries wireless telephony data for communication with a wireless telephony network. A second wireless interface circuit transceives packetized data between the host module and a second external device in accordance with a second wireless communication protocol. The second wireless interface circuit includes at least one module that is shared with first wireless interface circuit. The first wireless interface circuit and the second wireless interface circuit operate in accordance with a wireless interface schedule that includes a first time interval where the first wireless interface device and the second wireless interface device contemporaneously use the at least one module.
Abstract:
Various methods and systems are provided for space, frequency and time domain coexistence of RF signals. In one example, among others, a communication device includes a coexistence manager capable of monitoring operating conditions of a cellular modem and a coexistence assistant capable of monitoring operating conditions of a wireless connectivity unit. The coexistence manager is capable of modifying operation of the modem and/or unit based on an operating condition change. In another example, a method includes detecting a change in antenna isolation and/or operating temperature of a FE filter, determining filtering characteristics of the FE filter based at least in part upon the change, and modifying communications of coexisting communication protocols based at least in part upon the filtering characteristics. In another example, a TX/RX configuration for coexisting communication protocols is determined and communications in a protocol is modified based at least in part upon the TX/RX configuration.
Abstract:
Phase shift values between signals received at a plurality of receiving antennas are determined to orient one or more receiving antennas of the plurality of receiving antennas during signal location. Subsequent signals are received utilizing the oriented receiving antennas. Candidate angle of arrival (AOA) values are computed based on the determined phase shift values during the signal location so as to adaptively orient the receiving antennas. Each of the candidate AOA values is iteratively selected one at a time to adaptively orient the receiving antennas. The receiving antennas may be adaptively oriented according to the computed receive signal power levels. The determined phase shift values may be rounded to nearest discrete phase shift values. In this regard, one candidate AOA value is selected for each of the receiving antennas based on the corresponding rounded phase shift values such that the receiving antennas may be adaptively oriented during the signal location.
Abstract:
Methods and systems for enabling coexistence of multiple potentially interfering wireless components in a device are provided. A device may include a wireless module using a proprietary protocol and one or more modules using standardized protocols. The device further includes a coexistence arbitration module configured to arbitrate access to a shared communication medium among the wireless modules based on assertion of medium access requests by the modules and the associated priority of the asserted medium access requests. When multiple medium access requests have the same priority, precedence for access to the shared medium is determined based on additional criteria. The coexistence arbitration module may be a separate module or may be integrated into another module or distributed among the modules. The device may include a host processor for altering transmission characteristics of a module to increase the likelihood that another module can receive data within a reasonable time period.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
Aspects of a method and system for estimating and compensating for non-linear distortion in a transmitter using calibration are presented. Aspects of the system may include one more circuits that may enable estimation, within a single IC device, of distortion in output signals generated by a transmitter circuit. The circuitry may enable compensation of the estimated distortion by predistorting subsequent input signals. The transmitter circuit may generate subsequent output signals based on the predistorted subsequent input signals.
Abstract:
A circuit includes a first wireless interface circuit that transceives packetized data with a first external device in accordance with a first wireless communication protocol. A second wireless interface circuit transceives packetized data with a second external device in accordance with a second wireless communication protocol and wherein the operation of the second wireless interface circuit interferes with the operation of the first wireless interface circuit. A processing module selectively preempts use of the second frequency spectrum by the second external device using a plurality of preemption modes including a first preemption mode and a second preemption mode.
Abstract:
Aspects of a method and system for wireless local area network (WLAN) phase shifter training are presented. Aspect of the system may enable a receiving station, at which is located a plurality of receiving antennas, to estimate the relative phase at which each of the receiving antennas receives signals from a transmitting station. This process may be referred to as phase shifter training. After determining the relative phase for each of the receiving antennas, the receiving station may process received signals by phase shifting the signals received via each of the receiving antennas in accordance with the relative phase shifts determined during the phase shifter training process. Signals received via a selected one of the receiving antennas may be unshifted. The processed signals may be combined to generate a diversity reception signal.
Abstract:
Phase shift values between signals received at a plurality of receiving antennas are determined to orient one or more receiving antennas of the plurality of receiving antennas during signal location. Subsequent signals are received utilizing the oriented receiving antennas. Candidate angle of arrival (AOA) values are computed based on the determined phase shift values during the signal location so as to adaptively orient the receiving antennas. Each of the candidate AOA values is iteratively selected one at a time to adaptively orient the receiving antennas. The receiving antennas may be adaptively oriented according to the computed receive signal power levels. The determined phase shift values may be rounded to nearest discrete phase shift values. In this regard, one candidate AOA value is selected for each of the receiving antennas based on the corresponding rounded phase shift values such that the receiving antennas may be adaptively oriented during the signal location.
Abstract:
Aspects of a method and system for compensating for estimated distortion in a transmitter by utilizing a digital predistortion scheme with a quadrature feedback mixer configuration are presented. Aspects of the system may include an RF transmitter that enables generation of an RF output signal in response to one or more generated input signals. One or more feedback signals may be generated by performing frequency downconversion on the RF output signal within a corresponding one or more feedback mixer circuits. The generated one or more feedback signals may be inserted at a corresponding one or more insertion points in an RF receiver. Each insertion point may be between a receiver mixer circuit and corresponding circuits that generate a baseband signal based on the corresponding one of the feedback signals.