摘要:
A method of forming a conductive polysilicon thin film and a method of manufacturing a semiconductor device using the same are provided. The method of forming a conductive polysilicon thin film may comprise simultaneously supplying a Si precursor having halogen elements as a first reactant and a dopant to a substrate to form a first reactant adsorption layer that is doped with impurities on the substrate and then supplying a second reactant having H (hydrogen) to the first reactant adsorption layer to react the H of the second reactant with the halogen elements of the first reactant to form a doped Si atomic layer on the substrate.
摘要:
A gate structure adapted for use in a SONOS device unit cell is disclosed. The gate structure comprises a charge trap insulator and a single electrode. The charge trap insulator comprises a multilayer structure comprising a first silicon oxide layer, a silicon nitride layer, and a second silicon oxide layer. The single electrode is formed on the charge trap insulator, comprises a P-type impurity receptive semiconductor material, and is doped with P-type impurities.
摘要:
A semiconductor device includes a capacitor having a bottom electrode, a dielectric layer formed on the bottom electrode, a top electrode formed on the dielectric layer, and a contact plug having a metal that is connected with the top electrode, wherein the top electrode includes a doped poly-Si1-xGex layer and a doped polysilicon layer epitaxially deposited on the doped poly-Si1-xGex layer and the contact plug makes a contact with the doped polysilicon layer.
摘要:
A semiconductor device includes a capacitor having a bottom electrode, a dielectric layer formed on the bottom electrode, a top electrode formed on the dielectric layer, and a contact plug having a metal that is connected with the top electrode, wherein the top electrode includes a doped poly-Si1-xGex layer and a doped polysilicon layer epitaxially deposited on the doped poly-Si1-xGex layer and the contact plug makes a contact with the doped polysilicon layer.
摘要:
In non-volatile memory devices and methods of manufacturing the non-volatile memory devices, a barrier layer having an upper portion of silicon nitride and a lower portion of silicon oxide is formed on a substrate by providing a silicon oxide layer on the substrate and performing a radical nitridation process on an upper portion of the silicon oxide layer. A trapping layer including silicon nitride is formed on the barrier layer. A blocking layer and a gate electrode layer are subsequently formed on the trapping layer. The gate electrode layer, the blocking layer, the trapping layer and the barrier layer are then partially etched to provide a gate structure.
摘要:
Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.
摘要:
Provided is a capacitor of a semiconductor device and a method of fabricating the same. In one embodiment, the capacitor includes a lower electrode formed on a semiconductor substrate; a dielectric layer formed on the lower electrode; and an upper electrode that is formed on the dielectric layer. The upper electrode includes a first conductive layer, a second conductive layer, and a third conductive layer stacked sequentially. The first conductive layer comprises a metal layer, a conductive metal oxide layer, a conductive metal nitride layer, or a conductive metal oxynitride layer. The second conductive layer comprises a doped polysilicon germanium layer. The third conductive layer comprises a material having a lower resistance than that of the second conductive layer.