Abstract:
An ultra-large scale integrated circuit semiconductor device having a laterally non-uniform channel doping profile is manufactured by using a Group IV element implant at an implant angle of between 0° to 60° from the vertical to create interstitials in a doped silicon substrate under the gate of the semiconductor device. After creation of the interstitials, a channel doping implantation is performed using a Group III or Group V element which is also implanted at an implant angle of between 0° to 60° from the vertical. A rapid thermal anneal is then used to drive the dopant laterally into the channel of the semiconductor device by transient enhanced diffusion.
Abstract:
The application of a dissimilar anti-reflective coating on a conductive layer during photolithographic processing is avoided, as by modifying a portion of the upper surface of the conductive layer to exhibit anti-reflective properties. In an embodiment of the present invention, impurity ions are implanted into a portion of the upper surface of an aluminum or an aluminum-alloy conductive layer to render the upper portion substantially amorphous and, hence, decrease its reflectivity to perform an anti-reflective function.
Abstract:
A semiconductor device formed in a semiconductor substrate with a low hydrogen content barrier layer formed over the semiconductor device. The barrier layer is implanted with phosphorus ions. The semiconductor device may have a hydrogen getter layer formed under the barrier layer. The barrier layer is a high temperature PECVD nitride film, a high temperature PECVD oxynitride film or a high temperature LPCVD nitride film. The hydrogen getter layer is P-doped film having a thickness between 1000 and 2000 Angstroms and is a PSG, BPSG, PTEOS deposited oxide film, or BPTEOS deposited oxide film. Interconnects are made by a tungsten damascene process.
Abstract:
A SOI substrate is preamorphized by ion implanting Xe prior to forming source/drain extensions and source/drain regions, thereby virtually eliminating or significantly reducing floating body effects. Other aspects comprise ion implanting a Xe2+ into a bulk silicon or SOI substrate to effect preeamorphization prior to forming source/drain extensions and regions having shallow junctions with reduced vertical and lateral straggle.
Abstract:
A method for determining a dosimetry of a semiconductor substrate is provided which is accurate, reliable, simple and inexpensive. The present invention is especially useful for determining dosimetry of ultra shallow junctions formed using low energy implantation commonly found in sub−0.25 &mgr;m technologies. In a preferred embodiment, a material layer of a thickness is formed over a semiconductor substrate, followed by an ion implantation of a dopant. The material layer is then analyzed using a chemical method such as vapor phase plasma deposition inductively coupled plasma mass spectroscopy with atomic absorption (VPD-ICPMS-AA) to determine the amount of dopant present in the material layer.
Abstract:
A P-type dopant is implanted into a substrate region 94 under a select drain gate transistor field oxide region 75 at a large tilt angle .alpha., to prevent field turn-on under the select drain gate transistor field oxide region 75 in a non-volatile memory device such as a NAND flash memory device. A substrate region 114 under a select source gate transistor field oxide region 77 can also be implanted with a P-type dopant to prevent field turn-on under the region 77 if select source gates 90 and 92 are to be supplied with a voltage in operation rather than grounded. The substrate regions 94 and 114 under both the select drain gate transistor field oxide region 75 and the select source gate transistor field oxide region 77 can be implanted with the P-type dopant using a fixed-angle ion beam 120, by rotating the wafer 124 between the step of implanting one of the substrate regions and the step of implanting the other region.
Abstract:
A semiconductor device is formed having a gate electrode and a gate oxide comprising a central portion and edge portions having a thickness greater than that of the edge portions. Nitrogen is ion implanted into the surface of the semiconductor substrate to retard the growth of the central portion of the gate oxide, thereby enabling formation of gate oxide having a thin central portion and thicker edge portions.
Abstract:
The application of a dissimilar anti-reflective coating on a conductive layer during photolithographic processing is avoided, as by modifying a portion of the upper surface of the conductive layer to exhibit anti-reflective properties. In an embodiment of the present invention, impurity ions are implanted into a portion of the upper surface of an aluminum or an aluminum-alloy conductive layer to render the upper portion substantially amorphous and, hence, decrease its reflectivity to perform an anti-reflective function.
Abstract:
Contamination of semiconductor wafers are minimized during implantation processes within an implantation system. An implantation chamber of the implantation system and components within the implantation chamber are coated with additional material to minimize contaminants within the implantation chamber. For example, surfaces of the implantation chamber and/or the components of the implantation chamber are coated by performing an implantation process with a coating dopant before a semiconductor wafer is placed within the implantation chamber. In this manner, contaminants on the surfaces of the implantation chamber and/or the components within the implantation chamber are substantially coated and encapsulated with the coating dopant to prevent contact of the contaminant with the semiconductor wafer placed within the implantation chamber. Alternatively, shields are placed on surfaces of the implantation chamber and/or on surfaces of the components of the implantation chamber during an implantation process for a first semiconductor wafer having a contaminant source. Such shields are amenable for absorbing the contaminant and are removed after this implantation process and before a second semiconductor wafer is placed within the implantation chamber to minimize contamination of the second semiconductor wafer.
Abstract:
Chemical mechanical polishing for removing a hardened surface layer of photoresist in the manufacture of semiconductor devices. The use of chemical mechanical polishing allows for the removal of a hardened surface layer of photoresist that has been hardened through ion beam implantation or plasma etching. The chemical mechanical polishing process places a semiconductor wafer with a photoresist layer on a polishing pad. The photoresist layer is placed close to the polishing pad, so that the hardened surface layer of the photoresist layer is removed. A slurry is added to the polishing pad to aid in the removal of the hardened surface layer of the photoresist layer. Conventional chemical stripping is then used to remove the remaining photoresist layer.