Abstract:
A dual fuel injector in a dual common rail fuel system includes an injector body defining a liquid fuel supply passage to a liquid fuel nozzle outlet, and a gaseous fuel supply passage to a gaseous fuel nozzle outlet. A liquid fuel needle check is movable within the injector body and has an opening hydraulic surface exposed to a fuel pressure of a liquid fuel common rail. A gaseous fuel needle check is positioned side by side with the liquid fuel needle check and has an opening hydraulic surface exposed to the fuel pressure of the liquid fuel common rail. Sensitivity to differences in gaseous fuel rail pressure and liquid fuel rail pressure is reduced by the design.
Abstract:
A multi-fuel injector includes a primary fuel inlet configured to receive a liquid primary fuel, a pilot fuel inlet configured to receive a liquid pilot fuel that is a different fuel than the primary fuel, and a spill valve in fluid communication with the primary fuel inlet. The fuel injector also includes a control valve configured to control a pressure of fluid within a hydraulic control chamber, and an injection valve abutting the hydraulic control chamber, the injection valve being configured to move to an injection position to inject both the primary fuel and the pilot fuel.
Abstract:
A fuel system for an internal combustion engine includes a common rail and a plurality of fuel injectors connected to the common rail and each including an outlet check, an injection control valve, and an injection rate controller. The injection rate controller varies a flow area to a nozzle of the fuel injector such that a pressure drop through the fuel injector is varied to provide injection rate shaping.
Abstract:
A pump for use in pressurizing a cryogenic fluid. The pump may have a barrel, and a boost enclosure disposed around the barrel. The pump may also have a boost plunger disposed inside the barrel and configured to discharge fluid into the boost enclosure. The pump may further have a main plunger disposed inside the barrel and configured to receive fluid from the boost enclosure and to increase a pressure of the fluid.
Abstract:
A cryogenic fluid pump includes a plurality of pumping elements, each of the plurality of pumping elements having an actuator portion that is associated with and configured to selectively activate one end of a pushrod in response to a command by an electronic controller, an activation portion associated with an opposite end of the pushrod, and a pumping portion associated with the activation portion. For each of the plurality of pumping elements, the pumping portion is activated for pumping a fluid by the activation portion, which activation portion is activated by the actuator portion. The electronic controller is configured to selectively activate each of the plurality of pumping elements such that a flow of fluid from the cryogenic fluid pump results from continuous activations of the plurality of pumping elements at selected dwell times between activations of successive pumping elements.
Abstract:
A compression ignition engine is fueled from common rail fuel injectors that predominately inject natural gas fuel that is compression ignited with a small pilot injection of liquid diesel fuel. Before and after a rapid load loss transient, the liquid and gaseous rail pressures are controlled toward respective pressures based upon engine speed and load. During the transient, the liquid rail pressure is controlled relative to the gas rail pressure in order to maintain the liquid rail pressure greater than the gas pressure during the transient to avoid migration gaseous fuel into the liquid fuel side of the system.
Abstract:
A seal for a piston of a positive displacement pump includes an annular seal element, a radially outer surface of the annular seal element defining a longitudinal axis, and an annular energizer disposed between the annular seal element and the longitudinal axis along a radial direction. The annular energizer has a resilience along the radial direction to bias the annular seal element away from the longitudinal axis along the radial direction, the radial direction being perpendicular to the longitudinal axis. The radially outer surface of the annular seal element defines at least one circumferential groove about the annular seal element, and a concavity of the at least one circumferential groove faces away from the longitudinal axis along the radial direction
Abstract:
A fuel injector concurrently injects a liquid fuel and a gaseous fuel into a combustion chamber of an internal combustion engine. An interior wall of an injector body defines a control chamber and an injection chamber. A needle valve is disposed within the body and has a control surface fluidly communicating with the control chamber. A liquid fuel inlet fluidly communicates with the control chamber and a gaseous fuel inlet fluidly communicates with the injection chamber. A delivery passage is defined by at least one of the needle valve and the interior wall and configured to place the control chamber in fluid communication with the injection chamber to permit flow of liquid fuel therebetween.
Abstract:
The present disclosure is related to a flow limiting system for a dual fuel engine is disclosed. The flow limiting system includes a first valve configured to regulate a flow of a liquid fuel therethrough based on a pressure difference across the first valve. The flow limiting system further includes a second valve configured to regulate a flow of a gaseous fuel therethrough based on a pressure difference across the second valve. The second valve includes a valve body movably provided within a valve chamber. The valve body includes a control orifice extending therethrough. The valve body also includes grooves defined on an outer surface thereof.
Abstract:
A dual fuel engine utilizes a compression ignited pilot injection of liquid diesel fuel to ignite a mixture of gaseous fuel and air in each engine cylinder. The gaseous fuel is injected at a relatively low pressure directly into the engine cylinder from a fuel injector. The liquid diesel fuel is injected directly into the engine cylinder from the same fuel injector. In-cylinder dynamic gas blending during the compression stroke can reduce potential hydrocarbon slip that could occur when unburned fuel resides in crevice volumes within the engine cylinder.