Abstract:
The present disclosure relates to a microorganism of the genus Corynebacterium having an increased L-amino acid producing ability, containing NADP-dependent glyceraldehyde-3-phosphate dehydrogenase derived from the genus Lactobacillus. According to the present disclosure, the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase derived from Lactobacillus delbrueckii subsp. bulgaricus is introduced to increase the reducing power through the activity of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, thereby increasing the L-amino acid producing ability of the strains belonging to the genus Corynebacterium.
Abstract:
The present invention relates to an L-lysine-producing microorganism of the genus Corynebacterium and a method for producing L-lysine using the same.
Abstract:
The present disclosure relates to a novel pyruvate dehydrogenase variant, a polynucleotide encoding the pyruvate dehydrogenase variant, a microorganism of the genus Corynebacterium producing L-amino acid, which includes the pyruvate dehydrogenase variant, and a method for producing an L-amino acid using the microorganism.
Abstract:
The present invention relates to a microorganism of the genus Escherichia having enhanced L-tryptophan productivity, which has been modified to express yeast anthranilate phosphoribosyltransferase in order to be able to produce L-tryptophan at high concentration, and to a method for producing L-tryptophan, comprising a step of culturing the microorganism. The microorganism of the genus Escherichia can produce L-tryptophan, and thus can be advantageously used in the pharmaceutical industry and the feed industry, particularly for animal feed.
Abstract:
The present invention relates to microorganisms of corynebacterium which can utilize xylose and to a method for producing L-lysine using same. More particularly, the present invention relates to microorganisms of corynebacterium which are modified, in which genes encoding xylose isomerase and xylulokinase which are xylose synthases are introduced to express the xylose synthase. The present invention also relates to a method for producing L-lysine, comprising a step of culturing the modified microorganisms of corynebacterium using xylose as a carbon source, and recovering L-lysine from the culture.
Abstract:
The present disclosure relates to a microorganism of the genus Corynebacterium having an increased L-amino acid producing ability, containing NADP-dependent glyceraldehyde-3-phosphate dehydrogenase derived from the genus Lactobacillus. According to the present disclosure, the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase derived from Lactobacillus delbrueckii subsp. bulgaricus is introduced to increase the reducing power through the activity of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, thereby increasing the L-amino acid producing ability of the strains belonging to the genus Corynebacterium.
Abstract:
Provided are a novel promoter, a vector including the same, a microorganism including the same, and a method of producing glutathione using the same.
Abstract:
The present disclosure relates to a microorganism for producing an L-amino acid with enhanced activity of α-glucosidase and a method for producing an L-amino acid using the same. According to the present disclosure, the microorganism of the genus Corynebacterium producing an L-amino acid has enhanced activity of α-glucosidase, thereby improving L-amino acid production yield. Therefore, the microorganism may be very usefully used for L-amino acid production.