Abstract:
The invention relates to glass articles suitable for use as electronic device housing/cover glass which comprise a glass ceramic material. Particularly, a cover glass comprising an ion-exchanged glass ceramic exhibiting the following attributes (1) optical transparency, as defined by greater than 90% transmission at 400-750 nm; (2) a fracture toughness of greater than 0.6 MPa·m1/2; (3) a 4-point bend strength of greater than 350 MPa; (4) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (5) a Young's Modulus ranging between about 50 to 100 GPa; (6) a thermal conductivity of less than 2.0 W/m° C., and (7) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
Abstract:
The disclosure is directed to piezoelectric film structures and sensors, and display assemblies using same. The piezo electric film structure is transparent and includes: a substrate; a bottom optical layer disposed on or above the substrate; a bottom conducting layer disposed on or above the bottom optical layer; at least one piezoelectric layer disposed on or above the bottom conducting layer; a top conducting layer disposed on or above the at least one piezoelectric layer; and a top optical layer disposed on or above the top conducting layer. The sensor includes the piezoelectric film structure electrically connected to a signal processing system. The display assembly includes the sensor operably arranged relative to a display device. The piezoelectric film structures and sensors can be configured to determine one or more touch-sensing features associated with a touch event.
Abstract:
Described herein are various antimicrobial glass articles that have improved resistance to discoloration when exposed to harsh conditions. The improved antimicrobial glass articles described herein generally include a glass substrate that has a low concentration of nonbridging oxygen atoms, a compressive stress layer and an antimicrobial silver-containing region that each extend inward from a surface of the glass substrate to a specific depth, such that the glass article experiences little-to-no discoloration when exposed to harsh conditions. Methods of making and using the glass articles are also described.
Abstract:
Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 μm within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
Abstract:
Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 μm within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
Abstract:
Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of at least about 45 μm within the article are provided. In one embodiment, the compressive stress profile includes a single linear segment extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile includes two linear portions: the first portion extending from the surface to a relatively shallow depth and having a steep slope; and a second portion extending from the shallow depth to the depth of compression. The strengthened glass has a 60% survival rate when dropped from a height of 80 cm in an inverted ball drop test and an equibiaxial flexural strength of at least 10 kgf as determined by abraded ring-on-ring testing. Methods of achieving such stress profiles are also described.
Abstract:
The invention relates to glass articles suitable for use as electronic device housing/cover glass which comprise a glass ceramic material. Particularly, a cover glass comprising an ion-exchanged glass ceramic exhibiting the following attributes (1) optical transparency, as defined by greater than 90% transmission at 400-750 nm; (2) a fracture toughness of greater than 0.6 MPa·m1/2; (3) a 4-point bend strength of greater than 350 MPa; (4) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (5) a Young's Modulus ranging between about 50 to 100 GPa; (6) a thermal conductivity of less than 2.0 W/m° C., and (7) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
Abstract:
Methods of manufacturing a glass-based article includes exposing a glass-based substrate having a lithium aluminosilicate composition to an ion exchange treatment to form the glass-based article. The ion exchange treatment including a molten salt bath having a concentration of a sodium salt in a range from 8 mol % to 100 mol %. The glass-based article includes sodium having a non-zero varying concentration extending from a surface of the glass-based article to a depth of the glass-based article The glass-based article has compressive stress layer extending from the surface to a spike depth of layer from 4 micrometers to 8 micrometers. The glass-based article includes a molar ratio of potassium oxide (K2O) to sodium oxide (Na2O) averaged over a distance from the surface to a depth of 0.4 micrometers that is greater than or equal to 0 and less than or equal to 1.8.
Abstract:
A transparent article is described herein that includes: a glass-ceramic substrate comprising first and second primary surfaces opposing one another and a crystallinity of at least 40% by weight; and an optical film structure disposed on the first primary surface. The optical film structure comprises a plurality of alternating high refractive index (RI) and low RI layers and a scratch-resistant layer. The article also exhibits an average photopic transmittance of greater than 80% and a maximum hardness of greater than 10 GPa, as measured by a Berkovich Hardness Test over an indentation depth range from about 100 nm to about 500 nm. The glass-ceramic substrate comprises an elastic modulus of greater than 85 GPa and a fracture toughness of greater than 0.8 MPa·√m. Further, the optical film structure exhibits a residual compressive stress of ≥700 MPa and an elastic modulus of ≥140 GPa.
Abstract:
A glass substrate comprises: a first surface with surface features having an average width, an average height, a ratio of the average height to the average width of from about 0.04 to about 0.24, and the first surface has a haze value of 3% to 40%. The glass substrate can be transparent to electromagnetic radiation in the visible spectrum. The glass substrate can have a composition of: 61-75 mol. % SiO2; 7-15 mol. % Al2O3; 0-12 mol. % B2O3; 9-21 mol. % Na2O; 0-4 mol. % K2O; 0-7 mol. % MgO; and 0-3 mol. % CaO. The first surface can have an average surface roughness Ra of from 10 nm to 1,000 nm. The first surface can have an average characteristic largest feature size of from 200 nm to 50 μm. The ratio of the average height to the average width can be from 0.06 to about 0.08.