Abstract:
A transistor device comprising epitaxial LDD and Halo regions and a method of manufacturing the same are disclosed. According to embodiments of the present disclosure, the method may comprise: forming a gate stack on a semiconductor substrate; forming a gate spacer which covers the top of the gate stack and sidewalls of the gate stack; forming source/drain grooves; epitaxially growing a Halo material layer in the source/drain grooves, wherein the Halo material layer has a first doping element therein; epitaxially growing source/drain regions which apply stress to a channel region of the device, wherein the source/drain regions have a second doping element, opposite in conductivity to the first doping element, therein; isotropically etching the source/drain regions to remove portions of the source/drain regions, wherein the etching also removes portions of the Halo material layer directly under the gate spacer and extends to the channel region to some extent, wherein remaining portions of the Halo material layer constitute Halo regions of the device; and epitaxially growing an LDD material layer to form LDD regions of the device.
Abstract:
A method of manufacturing a semiconductor device is disclosed. In one embodiment, the method comprises: forming a gate stack on a substrate; etching the substrate on both sides of the gate stack to form C-shaped source/drain grooves; and wet-etching the C-shaped source/drain grooves to form Σ-shaped source/drain grooves. With this method, it is possible to effectively increase stress applied to a channel region, to accurately control a depth of the source/drain grooves, and to reduce roughness of side walls and bottom portions of the grooves and thus reduce defects by etching the C-shaped source/drain grooves and then further wet-etching them to form the Σ-shaped source/drain grooves.
Abstract:
A transistor device comprising epitaxial LDD and Halo regions and a method of manufacturing the same are disclosed. According to embodiments of the present disclosure, the method may comprise: forming a gate stack on a semiconductor substrate; forming a gate spacer which covers the top of the gate stack and sidewalls of the gate stack; forming source/drain grooves; epitaxially growing a Halo material layer in the source/drain grooves, wherein the Halo material layer has a first doping element therein; epitaxially growing source/drain regions which apply stress to a channel region of the device, wherein the source/drain regions have a second doping element, opposite in conductivity to the first doping element, therein; isotropically etching the source/drain regions to remove portions of the source/drain regions, wherein the etching also removes portions of the Halo material layer directly under the gate spacer and extends to the channel region to some extent, wherein remaining portions of the Halo material layer constitute Halo regions of the device; and epitaxially growing an LDD material layer to form LDD regions of the device.
Abstract:
The present invention discloses a semiconductor device, comprising a plurality of fins located on a substrate and extending along a first direction; a plurality of gate stack structures extending along a second direction and across each of the fins; a plurality of stress layers located in the fins on both sides of the gate stack structures and having a plurality of source and drain regions therein; a plurality of channel regions located in the fins below the gate stack structures; characterized in that the stress layers have connected parts in the fins and that the channel regions enclose the connected parts.
Abstract:
The present invention discloses a semiconductor device, comprising a plurality of fins located on a substrate and extending along a first direction; a plurality of gate stack structures extending along a second direction and across each of the fins; a plurality of stress layers located in the fins on both sides of the gate stack structures and having a plurality of source and drain regions therein; a plurality of channel regions located between the plurality of source and drain regions along a first direction; characterized in that the plurality of gate stack structures enclose the plurality of channel regions. In accordance with the semiconductor device and the method of manufacturing the same of the present invention, an all-around nanowire metal multi-gate is formed in self-alignment by punching through and etching the fins at which the channel regions are located using a combination of the hard mask and the dummy gate, thus the device performance is enhanced.
Abstract:
The present invention provides a manufacturing method for a semiconductor device having epitaxial source/drain regions, in which a diffusion barrier layer of the source/drain regions made of epitaxial silicon-carbon or germanium silicon-carbon are added on the basis of epitaxially growing germanium-silicon of the source/drain regions in the prior art process, and the introduction of the diffusion barrier layer of the source/drain regions prevents diffusion of the dopant in the source/drain regions, thus mitigating the SCE and DIBL effect. The use of the diffusion barrier layer for the source/drain regions can also reduce the dosage of HALO implantation in the subsequent step, thus if HALO is performed before epitaxial growth of the source/drain regions, impact on the surfaces of the source/drain regions can be alleviated; if HALO is performed after epitaxial growth of the source/drain regions, the stress release effect of the epitaxial layer of the source drain/regions caused by the implantation can be reduced as much as possible.
Abstract:
This invention relates to a MOS device for making the source/drain region closer to the channel region and a method of manufacturing the same, comprising: providing an initial structure, which includes a substrate, an active region, and a gate stack; performing ion implantation in the active region on both sides of the gate stack, such that part of the substrate material undergoes pre-amorphization to form an amorphous material layer; forming a first spacer; with the first spacer as a mask, performing dry etching, thereby forming a recess, with the amorphous material layer below the first spacer kept; performing wet etching using an etchant solution that is isotropic to the amorphous material layer and whose etch rate to the amorphous material layer is greater than or substantially equal to the etch rate to the {100} and {110} surfaces of the substrate material but is far greater than the etch rate to the {111} surface of the substrate material, thus removing the amorphous material layer below the first spacer, such that the substrate material below the amorphous material layer is exposed to the solution and is etched thereby, and in the end, forming a Sigma shaped recess that extends to the nearby region below the gate stack; and epitaxially forming SiGe in the Sigma shaped recess.
Abstract:
A method for manufacturing a dual metal CMOS device comprising: forming a first type metal work function modulation layer in the first gate trench and the second gate trench; forming a second type work function metal diffusion source layer in the first gate trench and the second gate trench; forming a heat isolation layer that shields the region of the first type device; and thermally annealing the regions where the first type device and the second type device are located.
Abstract:
The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress. Two metal gate layers of different types and/or intensity of stress are formed, respectively, thus different stresses are applied to the channel regions of different MOSFETs effectively and accurately, the device carrier mobility is enhanced simply and efficiently, and the device performance is also enhanced.
Abstract:
A semiconductor device, which comprises: a semiconductor substrate; a channel region on the semiconductor substrate, said channel region including a quantum well structure; a source region and a drain region on the sides of the channel region; a gate structure on the channel region; wherein the materials for the channel region, the source region and the drain region have different energy bands, and a tunneling barrier structure exists between the source region and the channel region.