Abstract:
An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
Abstract:
An opto-electronic apparatus comprises a substrate for supporting a plurality of components forming an opto-electronic assembly and an optical component attached to the substrate with an adhesive material, such as a solder or epoxy. The optical component is formed to include a plurality of bond slots disposed in parallel across at least a portion of the bottom surface of the optical component, the plurality of bond slots providing a path for a liquid adhesive material and improving the ability to displace the liquid adhesive material as the component is pressed into the surface of the substrate during the attachment process.
Abstract:
An apparatus for providing releasable attachment between a fiber connector and an opto-electronic assembly, the opto-electronic assembly utilizing an interposer substrate to support a plurality of opto-electronic components that generates optical output signals and receives optical input signals. An enclosure is used to cover the interposer substrate and includes a transparent region through which the optical output and input signals pass unimpeded. A magnetic connector component is attached to the lid and positioned to surround the transparent region, with a fiber connector for supporting one or more optical fibers magnetically attached to the connector component by virtue of a metallic component contained in the fiber connector. This arrangement provides releasable attachment of the fiber connector to the enclosure in a manner where the optical output and input signals align with the optical fibers in the connector.
Abstract:
Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
Abstract:
An apparatus is provided in which a photodiode supported on a planar light wave circuit assembly and arranged such that a photosensitive portion of the photodiode is aligned along an optical path from the output of the planar light wave circuit to the photodiode of the planar light wave circuit assembly. The photodiode is arranged such that a spot size of light output from the planar light wave circuit is incident on the photosensitive portion such that an optical signal transmitted by the light output is converted to an electric signal by the photodiode. A mounting structure is arranged between the planar light wave circuit assembly and the photodiode in order to support the photodiode on the planar light wave circuit assembly. The optical path of the light output from the planar light wave circuit does not contain any refractive optical elements.
Abstract:
An optical assembly package is provided for the optical receive components of an optical transceiver. The optical assembly package includes a receptacle subassembly configured to receive an end of an optical fiber. A housing is provided having an opening at one end configured to receive the receptacle assembly. Optical routing and wavelength demultiplexing elements are mounted to a bottom wall of the housing. An electrical subassembly comprising a support plate, a circuit board mounted on the support plate, an integrated circuit mounted to the circuit board, and a plurality of photodetectors mounted to the support plate proximate an edge of the circuit board. The electrical subassembly is positioned a stacked arrangement beneath the housing to minimize an overall length of the optical assembly package.
Abstract:
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
Abstract:
Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
Abstract:
An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
Abstract:
An apparatus is provided in which a photodiode supported on a planar light wave circuit assembly and arranged such that a photosensitive portion of the photodiode is aligned along an optical path from the output of the planar light wave circuit to the photodiode of the planar light wave circuit assembly. The photodiode is arranged such that a spot size of light output from the planar light wave circuit is incident on the photosensitive portion such that an optical signal transmitted by the light output is converted to an electric signal by the photodiode. A mounting structure is arranged between the planar light wave circuit assembly and the photodiode in order to support the photodiode on the planar light wave circuit assembly. The optical path of the light output from the planar light wave circuit does not contain any refractive optical elements.