Abstract:
A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
Abstract:
A low loss high extinction ratio on-chip polarizer is disclosed. The polarizer is formed of a mode convertor followed by a mode squeezer and a dump waveguide, and may be configured to pass a desired waveguide mode and reject undesired modes. An embodiment is described that transmits a TE0 mode while blocking a TM0 mode by converting it into a higher-order TEn mode in a waveguide taper, squeezing out the TEn mode in a second waveguide taper to lessen its confinement, and then dumping the TEn mode in a waveguide bend that is configured to pass the TE0 mode.
Abstract:
An integrated polarization splitter and rotator (PSR) employs the TE0 and TE1 modes of propagating light, rather than the TE0 and TM0 modes used in conventional prior art PSR. The integrated PSR exhibits appreciably flatter wavelength response because it does not require a directional coupler to de-multiplex incoming polarizations. The PSR allows tuning of the TM0 loss to reduce polarization dependent loss (PDL). This integrated polarization splitter and rotator is applicable to all integrated platforms including Silicon-on-Insulator (SOI) and III-V semiconductor compound systems. The PSR may be very compact (12×2 μm2), and provides low loss (
Abstract:
A novel phase shifter design for carrier depletion based silicon modulators, based on an experimentally validated model, is described. It is believed that the heretofore neglected effect of incomplete ionization will have a significant impact on ultra-responsive phase shifters. A low VπL product of 0.3V·cm associated with a low propagation loss of 20 dB/cm is expected to be observed. The phase shifter is based on overlapping implantation steps, where the doses and energies are carefully chosen to utilize counter-doping to produce an S-shaped junction. This junction has a particularly attractive VπL figure of merit, while simultaneously achieving attractively low capacitance and optical loss. This improvement will enable significantly smaller Mach-Zehnder modulators to be constructed that nonetheless would have low drive voltages, with substantial decreases in insertion loss. The described fabrication process is of minimal complexity; in particular, no high-resolution lithographic step is required.
Abstract:
A transmitter comprising a plurality of modulator and multiplexer (Mod-MUX) units, each Mod-MUX unit operating at an optical wavelength different from the other Mod-MUX units. The transmitter can additional include in each Mod-MUX unit two optical taps and three photodetectors that are configured to allow the respective Mod-MUX unit to be tuned to achieve thermal stabilization and achieve effective modulation and WDM operation across a range of temperatures. The Mod-MUX transmitter avoids the use of a frequency comb. The Mod-MUX transmitter avoids cross-modulation between different modulators for different laser signals.
Abstract:
An optical spectrum analyzer (OSA) for measuring an optical spectrum of an input optical signal in a measurement wavelength range is provided. The OSA comprises a modulator, an integrated optical filter, and a photodetector. The modulator modulates the input optical signal by applying a dither modulation to facilitate detection and noise rejection. The integrated optical filter, which may include a ring resonator system, is sequentially tunable to selectively transmit each wavelength of the modulated optical signal in the measurement wavelength range. The photodetector sequentially detects each wavelength of the modulated optical signal in the measurement wavelength range to provide a representative output electrical signal.
Abstract:
A lateral Ge/Si APD constructed on a silicon-on-insulator wafer includes a silicon device layer having regions that are doped to provide a lateral electric field and an avalanche region. A region having a modest doping level is in contact with a germanium body. There are no metal contacts made to the germanium body. The electrical contacts to the germanium body are made by way of the doped regions in the silicon device layer.
Abstract:
A low loss high extinction ratio on-chip polarizer is disclosed. The polarizer is formed of a mode convertor followed by a mode squeezer and a dump waveguide, and may be configured to pass a desired waveguide mode and reject undesired modes. An embodiment is described that transmits a TE0 mode while blocking a TM0 mode by converting the TM0 mode into a higher-order TEn mode in a waveguide taper, squeezing out the TEn mode in a second waveguide taper to lessen its confinement, and then dumping the TEn mode in a waveguide bend that is configured to pass the TE0 mode.
Abstract:
A transmitter comprising a plurality of modulator and multiplexer (Mod-MUX) units, each Mod-MUX unit operating at an optical wavelength different from the other Mod-MUX units. The transmitter can additional include in each Mod-MUX unit two optical taps and three photodetectors that are configured to allow the respective Mod-MUX unit to be tuned to achieve thermal stabilization and achieve effective modulation and WDM operation across a range of temperatures. The Mod-MUX transmitter avoids the use of a frequency comb. The Mod-MUX transmitter avoids cross-modulation between different modulators for different laser signals.
Abstract:
A skew compensation apparatus and method. In an optical system that uses optical signals, skew may be generated as the optical signals are processed from an input optical signal to at least two electrical signals representative of the phase-differentiated optical signals. A compensation of the skew is provided by including an optical delay line in the path of the optical signal that does not suffer the skew (e.g., that serves as the time base for the skew measurement). The optical delay line introduces a delay Tskew equal to the delay suffered by the optical signal that is not taken as the time base. The two signals are thereby corrected for skew.