摘要:
A method of operating a memory component that includes a memory core includes receiving, from external control lines, a write command that specifies a write operation. The write command is stored for a first time period after receiving the write command. After the first time period, the write operation is initiated in response to the write command. During the write operation, unmasked portions of received data are written to the memory core, where the unmasked portions of the data are bits of the data that are identified by received mask information as not being masked.
摘要:
A system comprising a storage location to store information representing a timing parameter pertaining to a random access memory device. An integrated circuit device generates a value that is representative of a period of time that elapses between the random access memory device exiting from a power down mode and a time at which the random access memory device is capable of receiving a command. The integrated circuit device generates the value from the information representing the timing parameter pertaining to the random access memory device.
摘要:
Disclosed herein are embodiments of an asynchronous memory device that use internal delay elements to enable memory access pipelining. In one embodiment, the delay elements are responsive to an input load control signal, and are calibrated with reference to periodically received timing pulses. Different numbers of the delay elements are configured to produce different asynchronous delays and to strobe sequential pipeline elements of the memory device.
摘要:
An integrated circuit memory device includes a memory core to store write data, a first set of interconnect resources to receive the write data, and a second set of interconnect resources to receive a write command associated with the write data. Information indicating whether mask information is included with the write command, wherein the mask information, when included in the write command, specifies whether to selectively write portions of the write data to the memory core.
摘要:
An integrated circuit memory device has a first set of pins to receive, using a clock signal, a row address followed by a column address. The device has a second set of pins to receive, using the clock signal, a sense command and a write command. The sense command specifies that the device activate a row of memory cells identified by the row address. The write command specifies that the memory device receive write data and store the write data at a location, identified by the column address, in the row of memory cells. The write command is posted internally to the memory device after a first delay has transpired from a first time period in which the write command is received at the second set of pins. The write data is received at a third set of pins after a second delay has transpired from the first time period.
摘要:
A memory controller is disclosed. In one particular exemplary embodiment, the memory controller may comprise a first transmitter to output first and second write commands synchronously with respect to a clock signal, a second transmitter to output first data using a first timing offset such that the first data arrives at a first memory device in accordance with a predetermined timing relationship with respect to a first transition of the clock signal, and a third transmitter to output second data using a second timing offset such that the second data arrives at a second memory device in accordance with a predetermined timing relationship with respect to a second transition of the clock signal.
摘要:
A memory module having a termination component. The memory module includes multiple memory devices, a termination component, a control signal path and multiple data signal paths. The control signal path is coupled to each of the memory devices and the termination component, and extends along the memory devices such that signals propagating on the control signal path propagate past each of the memory devices in succession before reaching the termination component. A unique set of data signal paths is coupled to each of the memory devices.
摘要:
A method, system and memory controller that uses adjustable write data delay settings. The memory controller includes control transmit circuitry, data transmit circuitry and timing circuitry. The control circuitry transmits a control signal to multiple memory devices via a shared control signal path. The data transmit circuitry transmits data signals to the memory devices via respective data signal paths. The timing circuitry delays transmission of data signals on each of the data signal paths by a respective time interval that is based, at least in part, on a time required for the control signal to propagate on the control signal path from the memory controller to a respective one of the memory devices.
摘要:
Techniques for increasing bandwidth in port-per-module memory systems having mismatched memory modules are disclosed. In one exemplary embodiment, the techniques are realized through a memory controller for controlling access to a memory module, wherein the memory module has a memory component with a memory core for storing data therein. The memory controller comprises a first set of interface connections for providing access to the memory module, and a second set of interface connections for providing access to the memory module. The memory controller also comprises memory access circuitry for providing memory access signals to the memory module for selecting between a first mode wherein a first portion of the memory core is accessible through the first set of interface connections and a second portion of the memory core is accessible through the second set of interface connections, and a second mode wherein both the first portion and the second portion of the memory core are accessible through the first set of interface connections.
摘要:
Techniques for increasing bandwidth in port-per-module memory systems having mismatched memory modules are disclosed. In one exemplary embodiment, the techniques are realized through a memory controller for controlling access to a memory module, wherein the memory module has a memory component with a memory core for storing data therein. The memory controller comprises a first set of interface connections for providing access to the memory module, and a second set of interface connections for providing access to the memory module. The memory controller also comprises memory access circuitry for providing memory access signals to the memory module for selecting between a first mode wherein a first portion of the memory core is accessible through the first set of interface connections and a second portion of the memory core is accessible through the second set of interface connections, and a second mode wherein both the first portion and the second portion of the memory core are accessible through the first set of interface connections.