Abstract:
A secondary battery system includes an assembled battery that includes a plurality of blocks that are connected in series to one another. Each of the plurality of the blocks includes same number of cells that are connected in parallel to one another. A control device is configured to calculate an internal resistance ratio and a protection current. The internal resistance ratio is a value obtained by dividing the higher one of internal resistances by the lower one of the internal resistances of two of the plurality of the blocks. The protection current is a value obtained by multiplying the internal resistance ratio by a current value of the assembled battery detected by a current sensor. The control device is configured to perform the charge-discharge control based on the protection current.
Abstract:
An ECU performs a process including the steps of: acquiring a lowest temperature TBmin and a temperature TC of cooling air; acquiring a fan airflow volume; setting a cooling coefficient; calculating a resistance value Rtmin; calculating a root-mean-square value of a current; setting TBoffset1; calculating a resistance value Rtmax; calculating a temperature index Ftmax; calculating a temperature index Ftmin; calculating an evaluation function ΔF; calculating a maximum current correction gain G; and calculating a maximum current value Imax.
Abstract:
A capacity estimation device that estimates a capacity of a power storage unit at a time of charging the power storage unit includes: a control unit that reduces an average current in a predetermined current restriction section after a start of charging the power storage unit, the average current indicating an average value per unit time of a charging current flowing in the power storage unit; and an estimation unit that estimates the capacity based on a voltage change rate of the power storage unit after or within the current restriction section.
Abstract:
A battery monitoring apparatus is provided for a secondary battery that produces a change in reaction heat at a predetermined capacity when a storage capacity changes in accompaniment with a current conduction. The battery monitoring apparatus includes: an acquiring unit that acquires, during the current conduction, an impedance change of the secondary battery; and a capacity determination unit that determines, based on the impedance change acquired by the acquiring unit, that the storage capacity of the secondary battery is the predetermined capacity.
Abstract:
The present disclosure includes an inverter connected to a power supply unit via a positive electrode side electrical path and a negative electrode side electrical path and including switching elements, a rotary electric machine including windings connected to each other at a neutral point and inputting and outputting power from and to the power supply unit via the inverter, a connection path electrically connecting an intermediate point between the storage batteries of the power supply unit to the neutral point of the windings, and a device including a first terminal and a second terminal enabling energization between the power supply unit and the device. The first terminal is connected to the connection path, and the second terminal is connected to at least one of the positive electrode side electrical path and the negative electrode side electrical path.
Abstract:
An attachment structure includes expansion valves used in a vehicle, and a housing to which the expansion valves are attached. The housing includes a flow path through which heat medium circulating in a heat pump cycle of an air conditioner of the vehicle flows, and the flow path is opened and closed by the expansion valves.
Abstract:
An electrode active material for a nonaqueous electrolyte secondary battery includes: a core part including at least one of an inorganic oxide and a carbon-composite inorganic composite oxide; and a shell part for carbon coating on the core part. The electrode active material has a specific surface area of 6.0 m2/g or more. The electrode active material has a moisture content of 400 ppm or less, which is measured by a Karl Fischer method such that the electrode active material is heated in a heat-evaporating manner, and continuously maintained at 250° C. for 40 minutes without exposing to an atmosphere after the electrode active material is exposed to the atmosphere to absorb moisture to be saturated.
Abstract:
A battery pack includes a plurality of battery stacks integrated by stacking a plurality of unit batteries, a fluid passage where fluid flows for cooling the unit batteries disposed between the battery stacks, a blower for circulating the fluid in the fluid passage, and a plurality of heat conducting plates. The heat conducting plate is thermally connected to an outer casing of the unit batteries constituting the battery stacks adjacent to each other, and disposed so as to constitute a plurality of cooled portions of which parts thereof exist in the fluid passage. The battery pack includes a passage forming member that demarcates the fluid passage as an independent passage from the area near the outer casing of the unit battery, and includes a partition wall for supporting the heat conducting plate.
Abstract:
A thermal conductive mechanism for a battery pack made up of a stack of a plurality of sub-battery modules each of which includes a plurality of battery cells arrayed thereon. The sub-battery modules each has opposed major surfaces and are laid to overlap each other in a direction perpendicular to the major surfaces. The thermal conductive mechanism is equipped with plates provided one for each of the sub-battery modules. Each of the plates has a given number of the battery cells disposed thereon and also has heat transfer surfaces extending in a planar direction of the plate. The heat transfer surfaces are placed in one of direct and indirect contact with the given number of the battery cells to achieve transfer of heat therebetween, thereby equalizing the temperature in each of the battery cells and also minimizing a difference in temperature among the battery cells.