Abstract:
A particulate matter detection system detects a particulate matter in exhaust gas. The particulate matter detection system includes: a particulate matter detection sensor in which at least one detection portion is provided, the at least one detection portion including at least one pair of multiple electrodes and a deposition surface which is interposed between the pair of electrodes and which the particulate matter is deposited on; a capacitor connected to the at least one detection portion in series; a power supply configured to apply a direct voltage to a series body including the at least one detection portion and the capacitor; and a voltage measurement portion configured to measure a voltage of the capacitor.
Abstract:
An exhaust purification device purifies an exhaust gas exhausted from an internal combustion engine. The exhaust purification device has a three-way catalytic agent that is located in an exhaust passage of the internal combustion engine and a particulate filter that is located downstream of the three-way catalytic agent in the exhaust passage and that collects an exhaust particulate. The particulate filter is provided with cells that includes sealed-inlet cells of which upstream ends are sealed and through cells through which an upstream side and a downstream side of the particulate filter communicate with each other. The particulate filter is arranged at a location where a temperature of the exhaust gas reaching an upstream end of the particulate filter is higher than or equal to a combustion temperature of the exhaust particulate, when the three-way catalytic agent is in an active state and when the internal combustion engine is operated.
Abstract:
A catalytic conversion characteristic of a catalyst, which indicates a relationship between an air-to-fuel ratio and a catalytic conversion efficiency of the catalyst, includes a second air-to-fuel ratio point, which is a point of starting an outflow of NOx from the catalyst and is located on a rich side of a first air-to-fuel ratio point that forms an equilibrium point for a rich component and oxygen. A constant current circuit, which induces a flow of an electric current from an exhaust side electrode to an atmosphere side electrode through a solid electrolyte layer in a sensor element, is connected to the sensor element. A microcomputer controls a current value of the electric current, which is induced by the constant current circuit, based on a difference between the first air-to-fuel ratio point and the second air-to-fuel ratio point at the catalyst.
Abstract:
A constant current is made to flow between sensor electrodes by a constant current circuit provided in the outside of the oxygen sensor, whereby the output characteristics of an oxygen sensor can be changed. Further, when a specified current-switching-permission condition is met, a value of current flowing between the sensor electrodes is switched and a direct current resistance value (internal resistance value) of the oxygen sensor is computed from a difference in the output of the oxygen sensor and a difference in the value of the current between before and after switching the value of the current flowing between the sensor electrodes. Then, at the time of a constant current supply in which the constant current is made to flow between the sensor electrodes, in other words, when the output characteristics of the oxygen sensor are changed, an amount of output-voltage-variation is found from a constant current value and a direct resistance value at that time. Then, the output of the oxygen sensor is corrected by the use of the amount of output-voltage-variation. In this way, an air-fuel ratio control based on the output of the oxygen sensor can be performed with high accuracy.
Abstract:
An exhaust gas purification device includes: an actual pressure difference obtainer that acquires an actual pressure difference which is an actual measurement value of a pressure difference of a filter; a flow rate obtainer that acquires a flow rate of exhaust gas flowing into the filter; a calculation pressure difference calculator that calculates a calculation pressure difference which is a calculated value of the pressure difference of the filter in a normal state when the exhaust gas flows into the filter with the flow rate acquired by the flow rate obtainer; and an abnormality determiner that performs an abnormality determination of the filter based on a pressure difference variation ratio which is a ratio between a variation in the actual pressure difference and a variation in the calculation pressure difference in response to a variation in the flow rate of the exhaust gas.
Abstract:
An O2 sensor has a sensor element, which includes a solid electrolyte layer and a pair of electrodes, while the solid electrolyte layer is interposed between the electrodes. The O2 sensor outputs an electromotive force signal in response to an air-to-fuel ratio of exhaust gas of an engine, which serves as a sensing subject. A constant current circuit, which induces a flow of a predetermined constant electric current between the pair of electrodes of a sensor element, and a current sensing arrangement, which senses a current value of an actual electric current that is conducted through the sensor element, are provided. A microcomputer determines whether an abnormality of the constant current circuit is present based on the current value of the electric current, which is sensed with the current sensing arrangement, in a case where the constant current is induced by the constant current circuit.
Abstract:
A deterioration diagnosis device, which performs a deterioration diagnosis of a catalyst, includes an exhaust-gas sensor provided downstream of the catalyst in a flow direction of exhaust gas such that an output value of the exhaust-gas sensor is used at least in the deterioration diagnosis. The deterioration diagnosis device further includes the constant current supply portion which applies a voltage to a sensor element of the exhaust-gas sensor to change an output characteristic of the exhaust-gas sensor, a response-time detection portion which detects a response time required for the output value of the exhaust-gas sensor to change from a rich threshold to a lean threshold, a response-time correction portion which controls the constant current supply portion to change the output characteristic of the exhaust-gas sensor so as to shorten the response time when the response time is longer than a predetermined reference time.
Abstract:
In a system having an oxygen sensor arranged downstream of a NOx storage-reduction catalyst, a constant current is made to flow between sensor electrodes by a constant current circuit provided in the outside of the oxygen sensor, which makes it possible to change an output characteristic of the oxygen sensor. Further, during a lean combustion control of an engine, a sensing responsiveness to a lean component of the oxygen sensor is improved. In this way, when NOx (lean component) is emitted to the downstream of the catalyst, the NOx can be quickly sensed by the oxygen sensor. Meanwhile, during a rich combustion control of the engine, the sensing responsiveness to a rich component of the oxygen sensor is improved. In this way, when HC and CO (rich components) are emitted to the downstream of the catalyst, the HC and the CO can be quickly sensed by the oxygen sensor.
Abstract:
An emission control system for an engine includes a catalyst and an exhaust-gas sensor provided downstream of the catalyst in a flow direction of exhaust gas. The exhaust-gas sensor includes a sensor element that includes a pair of electrodes and a solid electrolyte body located between the electrodes. The emission control system further includes a constant current supply portion that changes an output characteristic of the exhaust-gas sensor by applying a constant current between the electrodes, a catalytic-state determination portion which determines a rich/lean state of the catalyst, a rich direction control portion which performs and terminates a rich direction control depending on the rich/lean state of the catalyst, a lean direction control portion which performs a lean direction control after the rich direction control, and a characteristic control portion which performs a lean responsiveness control at least during the lean direction control.