Abstract:
A wireless communication device including a communication controller, a transmitter, an antenna and a receiver is provided. The wireless communication device further includes a current detector detecting a current consumption value of a power supply generator, a non-volatile memory pre-storing multiple current thresholds corresponding to multiple operating states, and an abnormal oscillation detector detecting abnormal oscillation by comparing the current consumption value acquired from the current detector and a current threshold corresponding to a present operating state of the wireless communication device out of the current threshold stored in the non-volatile memory.
Abstract:
A driving assistance device for a vehicle includes: an assistance processing portion that executes a notification of a possibility of a host vehicle intersecting with an other vehicle based on host vehicle information including information that provides an estimation of a travelling course of the host vehicle and an other vehicle information including information that provides an estimation of a travelling course of the other vehicle and acquired by wireless communication; and a map acquisition portion that acquires map data including data that specifies a circular intersection. The host vehicle information includes a position of the host vehicle. The assistance processing portion prevents the notification based on the circular intersection, which is disposed in front of the host vehicle in the travelling course of the host vehicle, according to at least the host vehicle information and the map data acquired by the map acquisition portion.
Abstract:
An antenna device mounted on a roof surface of a vehicle roof includes a ground plate disposed on the roof surface, an antenna ground, a first antenna element, and a second antenna element. The antenna ground is disposed on a plane perpendicular to the ground plate apart from a ground plate surface by a predetermined distance in a direction perpendicular to the ground plate surface. The first antenna element, whose first base end portion is connected to a first predetermined position of the antenna ground, extends from the first base end portion to a first front end portion in a direction moving away from the antenna ground. The second antenna element, whose second base end portion is connected to a second predetermined position of the antenna ground, extends from the second base end portion to a second front end portion in a direction moving away from the antenna ground.
Abstract:
A wireless communication apparatus includes a first wireless communication unit performing a first type wireless communication and a second wireless communication unit performing a second type wireless communication, an interference determination portion, and an interference suppression portion. The interference determination portion determines whether the first wireless communication unit is in an interference state based on a radio wave reception state of the first wireless communication unit acquired when the second wireless communication unit is in a transmitting state. In the interference state, radio waves received by the first wireless communication unit are interfered by the radio waves transmitted from the second wireless communication unit. The interference suppression portion executes an interference suppression process in response to the interference state by suppressing the radio waves transmitted from the second wireless communication from interfering with the radio waves received by the first wireless communication unit.
Abstract:
A vehicular wireless transmission apparatus includes a memory that stores (i) a default adjustment value relative to a default vehicle model, (ii) a default vehicle model data indicating the default vehicle model, and (iii) a correction value table for correcting the default adjustment value to be compliant with each of different vehicle models different from the default vehicle model. When a host vehicle model data read from a different ECU does not match with the default vehicle model data stored in the memory, it is determined that the vehicular wireless transmission apparatus is presently mounted in a host vehicle model indicated by the host vehicle model data read from the different ECU. The default adjustment value is then corrected by retrieving a correction value corresponding to the host vehicle model data from the correction value table.
Abstract:
A vehicle-mounted antenna device includes a base, a board, a circuit section, and a housing. The base is mountable on a roof of a vehicle. The board has an antenna element section and is stood on a surface of the base. The circuit section serves as at least part of a wireless communication circuit electrically connected to the antenna element section. The housing is made of a resin material and forms a projection of a vehicle outer shape. The board and the circuit section are located in space formed by the base and the housing. The board is stood on the surface of the base so that a first direction perpendicular to the surface of the base differs from a second direction equal to a thickness direction of the board. The circuit section implemented on the board at a position away from the base in the first direction.
Abstract:
A communication device has an information transmission setting process that obtains state information indicative of a self-vehicle state, and determines whether the state information satisfies a transmission stop condition for stopping a transmission of position information. Further, based on the obtained state information, the process determines whether the self-vehicle is in an abnormal state indicative of an abnormality of the self-vehicle. Then, if the preset transmission stop condition is satisfied and the abnormal state is not detected, the process stops the transmission of the position information. If the preset transmission stop condition is satisfied and the abnormal state is already detected, the process allows a periodic transmission of the position information.
Abstract:
A wireless communication device including a communication controller, a transmitter, an antenna and a receiver is provided. The wireless communication device further includes a current detector detecting a current consumption value of a power supply generator, a non-volatile memory pre-storing multiple current thresholds corresponding to multiple operating states, and an abnormal oscillation detector detecting abnormal oscillation by comparing the current consumption value acquired from the current detector and a current threshold corresponding to a present operating state of the wireless communication device out of the current threshold stored in the non-volatile memory.
Abstract:
An antenna device mounted on a roof surface of a vehicle roof includes a ground plate disposed on the roof surface, an antenna ground, a first antenna element, and a second antenna element. The antenna ground is disposed on a plane perpendicular to the ground plate apart from a ground plate surface by a predetermined distance in a direction perpendicular to the ground plate surface. The first antenna element, whose first base end portion is connected to a first predetermined position of the antenna ground, extends from the first base end portion to a first front end portion in a direction moving away from the antenna ground. The second antenna element, whose second base end portion is connected to a second predetermined position of the antenna ground, extends from the second base end portion to a second front end portion in a direction moving away from the antenna ground.
Abstract:
A vehicular antenna apparatus includes a substrate, a circuit portion, a case, and a heat transfer path. The substrate has an antenna portion. The circuit portion is mounted on the substrate and configures at least a part of a wireless communication circuit electrically coupled with the antenna portion. The case is made of resin material and configures a protruded portion of an outer surface of a vehicle. The substrate and the circuit portion are arranged in the case. The heat transfer path is arranged between the circuit portion and the case, and has a thermal conductivity higher than air. The circuit portion is electrically coupled with the antenna portion by a solid phase diffusion bonding.