Abstract:
A sample injection method for liquid chromatography is performed with an injection valve having a waste port, two sample loop ports, and two high-pressure ports. One high-pressure port can be connected to a pump and the other high-pressure port can be connected to a chromatography column. A sample loop is connected to one of the sample loop ports on one end and to a pump volume of a sample conveying device on the other end. A section of the sample loop can be separated to facilitate receiving a sample fluid in the sample loop. A control unit controls the injection valve and the sample conveying device. The sample injector allows a sample to be loaded into the sample loop and then pressurized to an operating pressure prior to injecting the sample into the chromatography column. The sample loop may also be isolated from the operating pressure for facilitating depressurization of the loop.
Abstract:
A plug unit for connecting capillary tubes includes a plug housing that has an axial borehole, a plug capillary tube that projects through the axial borehole, and a sealing element that surrounds the plug capillary tube. The front end of the plug capillary tube is sealed by an elastic and/or plastic deformation of the sealing element against the capillary tube receptacle opening of a bushing unit. A hollow cylindrical pressure piece is provided that surrounds the sealing element in an axial region facing away from the end surface of the plug capillary tube, and the pressure piece has a rearward end side that faces away from the end surface of the plug capillary tube and that can be loaded by the plug housing with an axial pressure force when the plug unit and bushing unit are connected.
Abstract:
A plug unit for connecting capillary tubes includes a plug housing that has an axial borehole, a plug capillary tube that projects through the axial borehole, and a sealing element that surrounds the plug capillary tube. The front end of the plug capillary tube is sealed by an elastic and/or plastic deformation of the sealing element against the capillary tube receptacle opening of a bushing unit. A hollow cylindrical pressure piece is provided that surrounds the sealing element in an axial region facing away from the end surface of the plug capillary tube, and the pressure piece has a rearward end side that faces away from the end surface of the plug capillary tube and that can be loaded by the plug housing with an axial pressure force when the plug unit and bushing unit are connected.
Abstract:
The invention relates to a sampler for providing a sample for high-performance liquid chromatography, in which a volume of liquid to be taken up into a cylinder can be aspirated by means of a first drive and can be compressed to a high pressure level by means of a second drive independent of the first drive or can be decompressed from this level in a controlled manner.
Abstract:
The present invention relates to a needle (1), wherein the needle (1) comprises a channel (12) extending through the needle (1), wherein the needle (1) comprises a needle tip (11), wherein the channel (12) comprises an opening at the needle tip (11), wherein the needle (1) defines an axial direction (x), wherein the axial direction (x) defines a distal direction and a proximal direction, wherein the needle tip (11) is a distal portion of the needle (1), and wherein the needle tip (11) comprises a first surface section (112) and a second surface section (111), wherein the first surface section (112) is arranged at a first angle (α) with respect to the axial direction (x) and the second surface section (111) is arranged at a second angle (β) with respect to the axial direction (x), wherein the first angle is different from the second angle. The present invention also relates to a corresponding apparatus, system and use.
Abstract:
A method performed in a liquid chromatography system that includes a metering device pushing a sample into a trap column. The metering device sucks in the sample from a sample reservoir, wherein the sucking in the sample from a sample reservoir precedes the step of pushing the sample into the trap column. The liquid chromatography system also includes a trap column and a metering device (100), wherein the system (1000) is adapted to assume a configuration allowing the metering device (100) to push a sample into the trap column (6) and wherein the metering device (100) is adapted to push the sample into the trap column (6) in this configuration, wherein the system (1000) is adapted to assume a configuration allowing the sample to be sucked into the system (1000) by means of the metering device (100). Furthermore, the invention relates to a use of the liquid chromatography system (1000) for liquid chromatography, in particular of high pressure liquid chromatography.
Abstract:
A high-pressure switching valve includes a stator and a rotor. The stator includes a plurality of ports where each port is connected at one end to a port connection and having at another end a predetermined port opening cross section at a stator end face of the stator. The rotor includes a rotor end face and at least one or a plurality of grooves. The rotor can be configured to have a rotary position with respect to the stator where two predetermined port opening cross sections connect to one of the grooves in a pressure-tight manner. The rotor and the stator can be pressed together in a sealing manner at the rotor end face and the stator end face in regions away from the port opening cross sections and the at least one or a plurality of grooves. The rotor and the stator each include a hard material. The rotor can be configured to wobble or tilt with respect to a rotational axis of the rotor.
Abstract:
A plug unit for connecting capillary tubes includes a plug housing that has an axial borehole, a plug capillary tube that projects through the axial borehole, and a sealing element that surrounds the plug capillary tube. The front end of the plug capillary tube is sealed by an elastic and/or plastic deformation of the sealing element against the capillary tube receptacle opening of a bushing unit. A hollow cylindrical pressure piece is provided that surrounds the sealing element in an axial region facing away from the end surface of the plug capillary tube, and the pressure piece has a rearward end side that faces away from the end surface of the plug capillary tube and that can be loaded by the plug housing with an axial pressure force when the plug unit and bushing unit are connected.
Abstract:
The invention relates to a method for setting a gradient delay volume GDV of a liquid chromatography system for a chromatography run in liquid chromatography, in particular a high-performance liquid chromatography system, in which a desired value GDVtarget of a gradient delay volume of the liquid chromatography system is ascertained or predefined and, if the value GDVtarget deviates from a specific fixed value GDVactual of a liquid chromatography system, this value GDVtarget is set in a range 0≦ΔGDV=GDVtarget−GDVactual≦Vmax of a volume of a volume adjustment device 5. Furthermore, the invention relates to an automatic sampler for carrying out such a method.