Abstract:
The present invention relates to a synthesis of chromanones or chromanes in a stereospecific matter in view of the 2-position in the chromanone or chromane ring. It has been found that this synthesis is particularly possible in the presence of a chiral compound of a specific type and of at least one Bransted acid or in the presence a specific chiral compound having a Bransted acid functional group in the molecule.
Abstract:
The present invention relates to a process of manufacturing compound having stereogenic centers from a mixture of E/Z isomers of unsaturated compounds having prochiral double bonds. The hydrogenation product has a specific desired configuration at the stereogenic centers. The process involves an asymmetric hydrogenation and an isomerization step. The process is very advantageous in that it forms the desired chiral product from a mixture of stereoisomers of the starting product in an efficient way.
Abstract:
The present invention is directed to a process for the manufacture of methyl limonitrile comprising a mixture of 3,7-dimethyl-2,6-nonadiene nitrile, 3,7-dimethyl-3,6-nonadiene nitrile and 7-methyl-3-methylene-6-nonene nitrile comprising the following steps: a) reacting 6-methyl-5-octen-2-one with cyano acetic acid and removing carbon dioxide and water, wherein the reaction and the removal of carbon dioxide and water are performed in the presence of a base and a co-base 1 in an organic solvent, and wherein the organic solvent is a solvent which forms a heteroazeotrop with water; b) removing the solvent and the base of the reaction mixture obtained after having performed step a) or step c) by distillation to obtain a reaction mixture, whereby this step may optionally be performed in the presence of a co-base 2; c) isomerizing the reaction mixture obtained after having performed step a) or step b) to obtain an isomerized reaction mixture in the presence of a co-base 2; whereby step b) can be performed before or after step c).
Abstract:
The present invention relates to a process of manufacturing compound having stereogenic centers from a mixture of E/Z isomers of unsaturated compounds having prochiral double bonds. The hydrogenation product has a specific desired configuration at the stereogenic centers. The process involves two asymmetric hydrogenation steps. The process is very advantageous in that it forms the desired chiral product from a mixture of stereoisomers of the starting product in an efficient way.
Abstract:
The present invention relates to a device for treatment of material transported through the device comprising at least one porous element consisting of specific solid metallic structure which allows cross-flow of the material through the porous element and wherein the porous element is coated by a non-acidic metal oxide which is impregnated by palladium (Pd).
Abstract:
The present invention relates to a new catalytic system, which is a Lindlar type catalyst, wherein the supporting material (CaCO3) has an average particle size (d50) of more than 10 Pm, as well as to the use of such a catalytic system for the partial hydrogenation of a carbon-carbon triple bond (to a carbon-carbon double bond).
Abstract:
The present invention is directed to a process for the manufacture of methyl limonitrile comprising a mixture of 3,7-dimethyl-2,6-nonadiene nitrile, 3,7-dimethyl-3,6-nonadiene nitrile and 7-methyl-3-methylene-6-nonene nitrile comprising the following steps: a) reacting 6-methyl-5-octen-2-one with cyano acetic acid and removing carbon dioxide and water, wherein the reaction and the removal of carbon dioxide and water are performed in the presence of a base and a co-base in an organic solvent, wherein the base is pyridine, wherein the co-base is 1,4-diamino butane, and wherein the organic solvent is a solvent which forms a heteroazeotrop with water; b) removing the solvent and pyridine of the reaction mixture obtained after having performed step a) or step c) by distillation to obtain a reaction mixture; c) isomerizing the reaction mixture obtained after having performed step a) or step b) to obtain an isomerized reaction mixture; whereby step b) can be performed before or after step c).