Abstract:
Present herein is a multirate transceiver wherein data can be received at a first data rate and transmitted at a second data rate. The transceiver device comprises a first interface for receiving data at one data rate a mapper that can map data from a first rate to the second rate, and a second interface for transmitting the data at the second data rate.
Abstract:
Equalization is provided in a high speed communication receiver that includes in various aspects an automatic gain control input stage, a decision feedback equalizer, a clock and data recovery circuit and equalization control circuits. The automatic gain control stage may include a continuous time filter with an adjustable bandwidth. A threshold adjust signal may be applied to the output of the automatic gain control stage. The equalization control circuits may be implemented in the digital domain and operate at a lower clock speed than the data path.
Abstract:
Methods and circuitry for implementing high speed first-in first-out (FIFO) structures. In one embodiment, a FIFO is disclosed that allows the frequency of one clock, e.g., the write clock, to be different than (e.g., half) that of the other (read) clock. In another embodiment a FIFO is presented that can be set and/or reset asynchronously. Other embodiments are disclosed wherein the read and write pointers are effectively monitored to ensure proper timing relationship, to detect loss of clock as well as to detect other abnormal FIFO conditions.
Abstract:
A compensation apparatus maintains an effective resistance of one or more resistors in a circuit by associating an adjustable resistor circuit to each resistor. The compensation apparatus compares the resistance of a resistor in the circuit with the resistance of a reference resistor. When the resistance of the resistor in the circuit falls outside of a desired range, the compensation apparatus adjusts the resistance of the adjustable resistor to adjust the effective resistance of the resistor and adjustable resistor combination.
Abstract:
Methods and circuitry for implementing high speed first-in first-out (FIFO) structures. In one embodiment, a FIFO is disclosed that allows the frequency of one clock, e.g., the write clock, to be different than (e.g., half) that of the other (read) clock. In another embodiment a FIFO is presented that can be set and/or reset asynchronously. Other embodiments are disclosed wherein the read and write pointers are effectively monitored to ensure proper timing relationship, to detect loss of clock as well as to detect other abnormal FIFO conditions.
Abstract:
Methods and circuitry for implementing high speed first-in first-out (FIFO) structures. In one embodiment, a FIFO is disclosed that allows the frequency of one clock, e.g., the write clock, to be different than (e.g., half) that of the other (read) clock. In another embodiment a FIFO is presented that can be set and/or reset asynchronously. Other embodiments are disclosed wherein the read and write pointers are effectively monitored to ensure proper timing relationship, to detect loss of clock as well as to detect other abnormal FIFO conditions.
Abstract:
Provided is a low latency high bandwidth clock and data recovery (CDR) system. For example, there is a low latency high bandwidth CDR system including a demultiplexer configured to convert a high frequency input datastream to a low frequency output datastream according to a first latency and a phase error processor at least partially embedded into the demultiplexer and configured to determine a datastream phase error of the high frequency input datastream according to a second latency. The embedded phase error processor allows a portion of a total latency of the CDR system due to the demultiplexer and the phase error processor to be less than a sum of the first and second latencies.
Abstract:
According to one general aspect, an apparatus may include a terminal configured to receive an analog input signal. In various embodiments, the apparatus may also include a multistage amplifier configured to amplify the analog input signal by an amount of gain. In some embodiments, the apparatus may include a distributed threshold adjuster interspersed between the stages of the multistage amplifier configured to adjust the DC voltage of the analog input signal to facilitate a decision by an analog-to-digital converter (ADC). In one embodiment, the apparatus may include the ADC configured to convert the amplified analog input signal to a digital output signal.
Abstract:
Various example embodiments are disclosed. According to an example embodiment, an apparatus may include a continuous time filter, a decision feedback equalizer, a clock and data recovery circuit, and an adaptation circuit. The adaptation circuit may be configured to adapt equalization according to at least one dithering algorithm by adjusting a delay adjust signal based on a mean square error of equalized data signals.
Abstract:
An adaptive algorithm is implemented that optimizes the slicer threshold by optimizing the tail distribution of a “+1” and “−1” histogram. Through the use of a low resolution and under-sampled ADC, a histogram of received bit may be created. The difference between the y-intersects of lines derived from the “+1” and “−1” histogram is used to determine an error function. The algorithm iteratively updates the threshold value based on this error function.