摘要:
An eFuse, includes: a substrate and an insulating layer disposed on the substrate; a first layer including a single crystal or polycrystalline silicon disposed on the insulating layer; a second layer including a single crystal or polycrystalline silicon germanium disposed on the first layer, and a third layer including a silicide disposed on the second layer. The Ge has a final concentration in a range of approximately five percent to approximately twenty-five percent.
摘要:
A contiguous block of a stack of two heterogeneous semiconductor layers is formed over an insulator region such as shallow trench isolation. A portion of the contiguous block is exposed to an etch, while another portion is masked during the etch. The etch removes an upper semiconductor layer selective to a lower semiconductor layer in the exposed portion. The etch mask is removed and the entirety of the lower semiconductor layer within the exposed region is metallized. A first metal semiconductor alloy vertically abutting the insulator region is formed, while exposed surfaces of the stack of two heterogeneous semiconductor layers, which comprises the materials of the upper semiconductor layer, are concurrently metallized to form a second metal semiconductor alloy. An inflection point for current and, consequently, a region of flux divergence are formed at the boundary of the two metal semiconductor alloys.
摘要:
A contiguous block of a stack of two heterogeneous semiconductor layers is formed over an insulator region such as shallow trench isolation. A portion of the contiguous block is exposed to an etch, while another portion is masked during the etch. The etch removes an upper semiconductor layer selective to a lower semiconductor layer in the exposed portion. The etch mask is removed and the entirety of the lower semiconductor layer within the exposed region is metallized. A first metal semiconductor alloy vertically abutting the insulator region is formed, while exposed surfaces of the stack of two heterogeneous semiconductor layers, which comprises the materials of the upper semiconductor layer, are concurrently metallized to form a second metal semiconductor alloy. An inflection point for current and, consequently, a region of flux divergence are formed at the boundary of the two metal semiconductor alloys.
摘要:
An integrated eFUSE device is formed by forming a silicon “floating beam” on air, whereupon the fusible portion of the eFUSE device resides. This beam extends between two larger, supporting terminal structures. “Undercutting” techniques are employed whereby a structure is formed atop a buried layer, and that buried layer is removed by selective etching. Whereby a “floating” silicide eFUSE conductor is formed on a silicon beam structure. In its initial state, the eFUSE silicide is highly conductive, exhibiting low electrical resistance (the “unblown state of the eFUSE). When a sufficiently large current is passed through the eFUSE conductor, localized heating occurs. This heating causes electromigration of the silicide into the silicon beam (and into surrounding silicon, thereby diffusing the silicide and greatly increasing its electrical resistance. When the current source is removed, the silicide remains permanently in this diffused state, the “blown” state of the eFUSE.
摘要:
An integrated eFUSE device is formed by forming a silicon “floating beam” on air, whereupon the fusible portion of the eFUSE device resides. This beam extends between two larger, supporting terminal structures. “Undercutting” techniques are employed whereby a structure is formed atop a buried layer, and that buried layer is removed by selective etching. Whereby a “floating” silicide eFUSE conductor is formed on a silicon beam structure. In its initial state, the eFUSE silicide is highly conductive, exhibiting low electrical resistance (the “unblown state of the eFUSE). When a sufficiently large current is passed through the eFUSE conductor, localized heating occurs. This heating causes electromigration of the silicide into the silicon beam (and into surrounding silicon, thereby diffusing the silicide and greatly increasing its electrical resistance. When the current source is removed, the silicide remains permanently in this diffused state, the “blown” state of the eFUSE.
摘要:
A structure including a phase change material and a related method are disclosed. The structure may include a first electrode; a second electrode; a third electrode; a phase change material electrically connecting the first, second and third electrodes for passing a first current through two of the first, second and third electrodes; and a refractory metal barrier heater layer about the phase change material for converting the phase change material between an amorphous, insulative state and a crystalline, conductive state by application of a second current to the phase change material. The structure may be used as a fuse or a phase change material random access memory (PRAM).
摘要:
A fuse structure comprises a cavity interposed between a substrate and a fuse material layer. The cavity is not formed at a sidewall of the fuse material layer, or at a surface of the fuse material layer opposite the substrate. A void may be formed interposed between the substrate and the fuse material layer while using a self-aligned etching method, when the fuse material layer comprises lobed ends and a narrower middle region. The void is separated by a pair of sacrificial layer pedestals that support the fuse material layer. The void is encapsulated to form the cavity by using an encapsulating dielectric layer. Alternatively, a block mask may be used when forming the void interposed between the substrate and the fuse material layer.
摘要:
A structure including a phase change material and a related method are disclosed. The structure may include a first electrode; a second electrode; a third electrode; a phase change material electrically connecting the first, second and third electrodes for passing a first current through two of the first, second and third electrodes; and a refractory metal barrier heater layer about the phase change material for converting the phase change material between an amorphous, insulative state and a crystalline, conductive state by application of a second current to the phase change material. The structure may be used as a fuse or a phase change material random access memory (PRAM).
摘要:
The present invention provides structures for antifuses that utilize electromigration for programming. By providing a portion of antifuse link with high resistance without conducting material and then by inducing electromigration of the conducting material into the antifuse link, the resistance of the antifuse structure is changed. By providing a terminal on the antifuse link, the change in the electrical properties of the antifuse link is detected and sensed. Also disclosed are an integrated antifuse with a built-in sensing device and a two dimensional array of integrated antifuses that can share programming transistors and sensing circuitry.
摘要:
A dielectric material layer is formed on a metal gate layer for a metal gate electrode, and then lithographically patterned to form a dielectric material portion, followed by formation of a polycrystalline semiconductor layer thereupon. A semiconductor device employing a metal gate electrode is formed in a region of the semiconductor substrate containing a vertically abutting stack of the metal gate layer and the polycrystalline semiconductor layer. A material stack in the shape of an electrical fuse is formed in another region of the semiconductor substrate containing a vertical stack of the metal gate layer, the dielectric material portion, and the polycrystalline semiconductor layer. After metallization of the polycrystalline semiconductor layer, an electrical fuse containing a polycrystalline semiconductor portion and a metal semiconductor alloy portion is formed over the dielectric material portion that separates the electrical fuse from the metal gate layer.