Abstract:
A substrate cleaning roll that has a cylindrical shape and scrubs a surface of a substrate by rotating about a rotational axis in a longitudinal direction in contact with the substrate, the longitudinal direction being parallel to the surface of the substrate, the substrate cleaning roll including a bevel cleaner at least at one end of the substrate cleaning roll in the longitudinal direction, the bevel cleaner including a sloping surface to be in contact with an outermost edge of a bevel portion at a rim of the substrate when the substrate cleaning roll comes into contact with the substrate and cleans the surface of the substrate.
Abstract:
A roll-type cleaning member for scrubbing and cleaning a target cleaning surface of a substrate includes a plurality of nodules formed on a surface thereof. Each nodule includes a slit which extends so as not to be parallel to the rotation direction of the roll-type cleaning member, upstream edges are formed by the slit so as to serve as edges first contacting the target cleaning surface when a cleaning surface of the nodule contacts the target cleaning surface of the substrate by the rotation of the roll-type cleaning member, and the upstream edges are provided at a plurality of positions of the cleaning surface of the nodule in the circumferential direction.
Abstract:
A substrate cleaning apparatus including a self-cleaning device is disclosed. The substrate cleaning apparatus includes a self-cleaning device configured to clean a cylindrical scrub-cleaning tool that is rubbed against a substrate surface. The self-cleaning device includes a cleaning body having an inner circumferential surface that is shaped along an circumferential surface of the scrub-cleaning tool, and at least one cleaning nozzle configured to eject a cleaning fluid toward the circumferential surface of the scrub-cleaning tool through a gap between the circumferential surface of the scrub-cleaning tool and the inner circumferential surface of the cleaning body.
Abstract:
A substrate processing method which can reduce electrostatic charge of a substrate surface is disclosed. The substrate processing method includes: performing a first processing step of supplying a liquid containing pure water onto a substrate while rotating the substrate; and then performing a second processing step of supplying the liquid onto the substrate, while rotating the substrate, under a condition in which a rate of increase in a surface potential of the substrate is lower than that in the first processing step.
Abstract:
A substrate processing method includes rotating a substrate about a central axis thereof; starting irradiation of a surface of the substrate with soft X-rays; simultaneously with or after starting the irradiation of the surface of the substrate with the soft X-rays, starting supply of pure water onto the surface of the substrate; stopping the supply of the pure water onto the surface of the substrate; and then stopping the irradiation of the surface of the substrate with the soft X-rays.
Abstract:
A polishing apparatus includes: a pure water supply line configured to supply deaerated pure water into the polishing apparatus; a gas dissolving unit coupled to the pure water supply line and configured to dissolve a gas in the deaerated pure water to produce gas-dissolved pure water; a gas-dissolved pure water delivery line coupled to the gas dissolving unit and configured to deliver the gas-dissolved pure water; an ultrasonic cleaning unit coupled to the gas-dissolved pure water delivery line and configured to impart an ultrasonic vibration energy to the gas-dissolved pure water, which has been delivered through the gas-dissolved pure water delivery line, and then eject the gas-dissolved pure water onto an object to be cleaned; and a controller configured to control the gas dissolving unit and the ultrasonic cleaning unit.
Abstract:
A substrate cleaning apparatus cleans a surface of a substrate such as a semiconductor wafer in a non-contact state by using two-fluid jet cleaning. The substrate cleaning apparatus includes a substrate holding mechanism configured to hold and rotate the substrate, with the front surface facing downward, in a horizontal state, and a two-fluid nozzle configured to jet a two-fluid jet flow, comprising a gas and a liquid, upwardly toward the front surface of the substrate held by the substrate holding mechanism.
Abstract:
A substrate cleaning apparatus performs scrub cleaning of a surface of a substrate such as a semiconductor wafer. The substrate cleaning apparatus includes a cleaning member having a lower-end contact surface, and a cleaning liquid supply nozzle configured to supply a cleaning liquid to the surface of the substrate. The cleaning member is configured to scrub-clean the surface of the substrate by moving the cleaning member in one direction while the cleaning member is being rotated about its rotational axis and by rubbing the lower-end contact surface of the cleaning member against the surface of the substrate which is being rotated horizontally in the presence of the cleaning liquid. The cleaning member has an inverted truncated-cone shape wherein the angle α between the lower-end contact surface and a straight line on an outer circumferential surface of the cleaning member is larger than 90° and is not more than 150°.
Abstract:
An apparatus for cleaning a substrate has a holding unit 60 that holds a substrate W; a rotated unit 30 connected to the holding unit 60; a rotating unit 35 that is provided on a peripheral outer side of the rotated unit 30 and rotates the rotated unit 30; and a cleaning unit 10, 20 that physically cleans the substrate W held by the holding unit 60.
Abstract:
A cleaning member 10, for use in cleaning a substrate W, comprises: a tip surface 13 configured to be in contact with the substrate W when cleaning the substrate W, and the tip surface 13 being not covered with a skin layer 11; and a circumferential part having a covered part 16, which is disposed on the base end side and a circumferential surface of which is covered with the skin layer 11, and an exposed part 17, which is disposed on the tip end side and a circumferential surface of which is not covered with the skin layer 11.