Abstract:
Provided are a thin film transistor and a method for manufacturing the same. The thin film transistor manufacturing method includes forming a gate electrode on a substrate, forming an active layer that is adjacent to the gate electrode and includes an oxide semiconductor, forming an oxygen providing layer on the active layer, forming a gate dielectric between the gate electrode and the active layer, forming source and drain electrodes coupled to the active layer, forming a planarizing layer covering the gate electrode and the gate dielectric, forming a hole exposing the active layer, and performing a heat treatment process onto the planarizing layer in an atmosphere of oxygen.
Abstract:
According to an exemplary embodiment of the present invention, by providing an apparatus for fabricating a stretchable electronic element including a chamber, a plurality of sample portions loaded into the chamber and spaced apart from each other, while the chamber is maintained at atmospheric pressure, and a movable member moving the plurality of sample portions and compressing each of the plurality of sample portions together while the chamber is kept under vacuum, it is possible to fabricate variable stretchable electronic elements.
Abstract:
Provided is a color changeable device which includes a first substrate and a second substrate that are spaced apart from each other, a first transparent electrode disposed on the first substrate, a second transparent electrode disposed on the second substrate, an electrochromic layer disposed between the first transparent electrode and the second transparent electrode, an organic layer disposed between the first transparent electrode and the electrochromic layer. The organic layer may include a hole injection layer or an electron injection layer. The organic layer may further include a hole transport layer or an electron transport layer.
Abstract:
Provided is a complex display device Including a first substrate and an opposed second substrate, a first electrode, an electrochromic layer, a common electrode, an emission part and a second electrode, laminated between the first substrate and the second substrate one by one, and an organic layer disposed between the first electrode and the electrochromic layer, or between the electrochromic layer and the common electrode. The organic layer of the complex display device may include at least one of a hole injection material, a hole transport material and a mixture thereof, or at least one of an electron injection material, an electron transport material or a mixture thereof.
Abstract:
Provided are a stretchable electronic device and a method of manufacturing the same. The manufacturing method includes forming coil interconnection on a first substrate, forming a first stretchable insulating layer that covers the coil interconnection, forming a second substrate on the first stretchable insulating layer, separating the first substrate from the coiling interconnection and the first stretchable insulating layer, and forming a transistor on the coil interconnection.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
Provided are a transferred thin film transistor and a method of manufacturing the same. The method includes: forming a source region and a drain region that extend in a first direction in a first substrate and a channel region between the source region and the drain region; forming trenches that extend in a second direction in the first substrate to define an active layer between the trenches, the second direction intersecting the first direction; separating the active layer between the trenches from the first substrate by performing an anisotropic etching process on the first substrate inside the trenches; attaching the active layer on a second substrate; and forming a gate electrode in the first direction on the channel region of the active layer.
Abstract:
Provided is a method for fabricating an electronic device, the method including: preparing a carrier substrate including an element region and a wiring region; forming a sacrificial layer on the carrier substrate; forming an electronic element on the sacrificial layer of the element region; forming a first elastic layer having a corrugated surface on the first elastic layer of the wiring region; forming a metal wirings electrically connecting the electronic element thereto, on the first elastic layer of the wiring region; forming a second elastic layer covering the metal wirings, on the first elastic layer; forming a high rigidity pattern filling in a recess of the second elastic layer above the electronic element so as to overlap the electronic element, and having a corrugated surface; forming a third elastic layer on the second elastic layer and the high rigidity pattern; and separating the carrier substrate.
Abstract:
Provided is a method for manufacturing a stretchable wire, the method including removing a portion of a photoresist layer on a substrate to form a photoresist pattern comprising at least one pattern slit, applying a liquid-phase conductive material on the photoresist pattern to form a liquid-phase conductive structure in the pattern slit, forming a stretchable first insulating layer on the liquid-phase conductive structure, after removing the photoresist pattern, and separating the liquid-phase conductive structure and the first insulating layer from the substrate.
Abstract:
Provided is an electronic circuit including a substrate having a flat device region and a curved interconnection region. A conduction line may extend along an uneven portion in the interconnection region and may be curved. The uneven portion and the conductive line may have a wavy shape. An external force applied to the electronic circuit may be absorbed by the uneven portion and the conductive line. The electronic device may not be affected by the external force. Therefore, functions of the electronic circuit may be maintained. A method of fabricating an electronic circuit according to the present invention may easily adjust areas and positions of the interconnection region and the device region.