Abstract:
A nerve modulation device includes a first ultrasound transducer and a second ultrasound transducer. The first and second ultrasound transducers are configured to emit a first and second ultrasound waves, respectively, that exhibit different frequencies. The first and second ultrasound transducers can emit the first and second ultrasound waves in directions that are selected to cause the first and second ultrasound waves to intersect with each other at an intersection site that is at or near a selected nerve. At the intersection site, the first and second ultrasound waves can non-linearly interact to form an acoustic wave exhibiting a frequency that is less than the frequencies of the first and second ultrasound waves. The acoustic wave can modulate a selected nerve.
Abstract:
Appurtenances to a wound dressing and systems for monitoring wound dressings are described. In some embodiments, a system for monitoring a wound dressing includes: an appurtenance to a wound dressing, wherein the appurtenance includes a sensor unit, an electronic identifier, and a transmitter unit operably attached to the sensor unit and to the electronic identifier; and a local unit including a receiver for the transmitter unit, a processor operably attached to the receiver, and a communication unit operably attached to the processor.
Abstract:
The present disclosure provides systems and methods associated with acoustic transmitters, receivers, and antennas. Specifically, the present disclosure provides a transducer system for transmitting and receiving acoustic energy according to a determined acoustic emission/reception pattern. In various embodiments, an acoustic transducer system may include an array of sub-wavelength transducer elements each configured with an electromagnetic resonance at one of a plurality of electromagnetic frequencies. Each sub-wavelength transducer element may generate an acoustic emission in response to the electromagnetic resonance. A beam-forming controller may cause electromagnetic energy to be transmitted at select electromagnetic frequencies to cause a select subset of the sub-wavelength transducer elements to generate acoustic emissions according to a selectable acoustic transmission pattern. A common port may facilitate electromagnetic communication with each of the sub-wavelength transducer elements.
Abstract:
Devices and methods are disclosed herein for preventing or treating ventilator associated pneumonia in a mammalian subject. The device includes an endotracheal tube having an interior surface and an exterior surface; and one or more closed cell layers in contact with the exterior surface and circumferentially surrounding one or more longitudinal portion of the endotracheal tube, wherein the closed cell layer is flexibly shaped to reversibly form a seal in a trachea of a mammalian subject.
Abstract:
Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, an artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo; and at least one particle retaining structure positioned to contact the directed flow of synovial fluid and configured to retain non-physiological particles present within the synovial fluid.
Abstract:
In some embodiments, a system for responsive release of a medicament in an artificial joint region includes: an implantable sensor unit including at least one sensor, the implantable sensor unit configured to be implanted in an artificial joint region; a responsive release control unit including an electronic controller and memory, the responsive release control unit configured to receive signals from the implantable sensor unit and to send signals to an implantable medicament release unit; and the implantable medicament release unit, including a reservoir and a controllable release unit attached to the reservoir, the controllable release unit configured to provide access to the reservoir in response to signals from the responsive release control unit, the implantable medicament release unit configured to be implanted in the artificial joint region.
Abstract:
Devices and methods are disclosed herein for preventing or treating ventilator associated pneumonia in a mammalian subject. The device includes an endotracheal tube having an interior surface and an exterior surface; and one or more closed cell layers in contact with the exterior surface and circumferentially surrounding one or more longitudinal portion of the endotracheal tube, wherein the closed cell layer is flexibly shaped to reversibly form a seal in a trachea of a mammalian subject.
Abstract:
Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, an artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo; and at least one particle retaining structure positioned to contact the directed flow of synovial fluid and configured to retain non-physiological particles present within the synovial fluid.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of projections extending from an external surface of the shell, the projections forming a plurality of compartments adjacent to the external surface of the shell; at least one fluid-permeable cover attached to the projections, the cover completely enveloping the shell and the plurality of projections; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the sensor modules oriented to detect one or more analytes in a fluid within one of the plurality of compartments, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
Abstract:
Artificial joint prosthetic components including synovial fluid deflection structures are described. Embodiments of artificial joint prosthesis include those with: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis; and at least one fluid deflection structure positioned on the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo.