Abstract:
In accordance with an embodiment of the invention, there is provided a soft protrusion structure for an electrostatic chuck, which offers a non-abrasive contact surface for wafers, workpieces or other substrates, while also having improved manufacturability and compatibility with grounded surface platen designs. The soft protrusion structure comprises a photo-patternable polymer.
Abstract:
Coatings applicable to a variety of substrate articles, structures, materials, and equipment are described. In various applications, the substrate includes metal surface susceptible to formation of oxide, nitride, fluoride, or chloride of such metal thereon, wherein the metal surface is configured to be contacted in use with gas, solid, or liquid that is reactive therewith to form a reaction product that deleterious to the substrate article, structure material, or equipment. The metal surface is coated with a protective coating preventing reaction of the coated surface with the reactive gas, and/or otherwise improving the electrical, chemical, thermal, or structural properties of the substrate article or equipment. Various methods of coating the metal surface are described, and for selecting the coating material that is utilized.
Abstract:
Coatings applicable to a variety of substrate articles, structures, materials, and equipment are described. In various applications, the substrate includes metal surface susceptible to formation of oxide, nitride, fluoride, or chloride of such metal thereon, wherein the metal surface is configured to be contacted in use with gas, solid, or liquid that is reactive therewith to form a reaction product that is deleterious to the substrate article, structure, material, or equipment. The metal surface is coated with a protective coating preventing reaction of the coated surface with the reactive gas, and/or otherwise improving the electrical, chemical, thermal, or structural properties of the substrate article or equipment. Various methods of coating the metal surface are described, and for selecting the coating material that is utilized.
Abstract:
Coatings applicable to a variety of substrate articles, structures, materials, and equipment are described. In various applications, the substrate includes metal surface susceptible to formation of oxide, nitride, fluoride, or chloride of such metal thereon, wherein the metal surface is configured to be contacted in use with gas, solid, or liquid that is reactive therewith to form a reaction product that deleterious to the substrate article, structure material, or equipment. The metal surface is coated with a protective coating preventing reaction of the coated surface with the reactive gas, and/or otherwise improving the electrical, chemical, thermal, or structural properties of the substrate article or equipment. Various methods of coating the metal surface are described, and for selecting the coating material that is utilized.
Abstract:
Articles and methods relating to coatings having superior chemical resistance and structural integrity, can be prepared via atomic layer deposition and fluoro-annealing at low process temperatures of between about 150° C. and less than 300° C. The film comprises a fluorinated metal oxide containing yttrium.
Abstract:
Articles and methods relating to coatings having superior plasma etch-resistance and which can prolong the life of RIE components are provided. An article has a vacuum compatible substrate and a protective film overlying at least a portion of the substrate. The film comprises a fluorinated metal oxide containing yttrium.
Abstract:
Described are multi-layer coatings, substrates (i.e., articles) coated with a multi-layer coating, and methods of preparing a multi-layer coating by atomic layer deposition, wherein the coating includes layers alumina and yttria.
Abstract:
In one embodiment, a method of fabricating an electrostatic clamp includes forming an insulator body, forming an electrode on the insulator body, and depositing a layer stack on the electrode, the layer stack comprising an aluminum oxide layer that is deposited using atomic layer deposition (ALD).
Abstract:
In accordance with an embodiment of the invention, there is provided a soft protrusion structure for an electrostatic chuck, which offers a non-abrasive contact surface for wafers, workpieces or other substrates, while also having improved manufacturability and compatibility with grounded surface platen designs. The soft protrusion structure comprises a photo-patternable polymer.
Abstract:
In accordance with an embodiment of the invention, there is provided a soft protrusion structure for an electrostatic chuck, which offers a non-abrasive contact surface for wafers, workpieces or other substrates, while also having improved manufacturability and compatibility with grounded surface platen designs. The soft protrusion structure comprises a photo-patternable polymer.